Utilize este identificador para referenciar este registo: http://hdl.handle.net/10437/10198
Título: Parallelization strategies for spatial agent-based models
Autores: Fachada, Nuno
Lopes, Vitor V.
Martins, Rui C.
Rosa, Agostinho C.
Editora: Springer
Citação: Fachada, N., Lopes, V. V., Martins, R. C., & Rosa, A. C. (2017). Parallelization strategies for spatial agent-based models. International Journal of Parallel Programming, 45(3), 449-481
Resumo: Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as an independent decision-making agent. Large scale emergent behavior in ABMs is population sensitive. As such, the number of agents in a simulation should be able to reflect the reality of the system being modeled, which can be in the order of millions or billions of individuals in certain domains. A natural solution to reach acceptable scalability in commodity multi-core processors consists of decomposing models such that each component can be independently processed by a different thread in a concurrent manner. In this paper we present a multithreaded Java implementation of the PPHPC ABM, with two goals in mind: (1) compare the performance of this implementation with an existing NetLogo implementation; and, (2) study how different parallelization strategies impact simulation performance on a shared memory architecture. Results show that: (1) model parallelization can yield considerable performance gains; (2) distinct parallelization strategies offer specific trade-offs in terms of performance and simulation reproducibility; and, (3) PPHPC is a valid reference model for comparing distinct implementations or parallelization strategies, from both performance and statistical accuracy perspectives.
Descrição: International Journal of Parallel Programming
URI: https://doi.org/10.1007/s10766-015-0399-9
ISSN: 1573-7640
Aparece nas colecções:ECATI - Artigos de Revistas Internacionais com Arbitragem Científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2017_parallelizationstrategies_arxiv.pdf977.39 kBAdobe PDFVer/Abrir

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.