Utilize este identificador para referenciar este registo: http://hdl.handle.net/10437/10193
Título: micompm: A MATLAB/Octave toolbox for multivariate independent comparison of observations
Autores: Fachada, Nuno
Rosa, Agostinho C.
Palavras-chave: MULTIVARIATE DISTRIBUTION
MULTIVARIATE STATISTICS
GNU OCTAVE
MATLAB
STATISTICAL TESTS
PRINCIPAL COMPONENT ANALYSIS
MATLAB
ESTATÍSTICA MULTIVARIADA
TESTES ESTATÍSTICOS
DISTRIBUIÇÃO MULTIVARIADA
LINGUAGEM GNU OCTAVE
ANÁLISE DE COMPONENTES PRINCIPAIS
Editora: JOSS
Citação: Fachada, N., & Rosa, A. C. (2018). micompm: A MATLAB/Octave toolbox for multivariate independent comparison of observations. Journal of Open Source Software, 3(23), 430
Resumo: micompm is a MATLAB / GNU Octave port of the original micompr R package for comparing multivariate samples associated with different groups. Its purpose is to determine if the compared samples are significantly different from a statistical point of view. This method uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using statistical tests and score plots. This technique is independent of the distributional properties of samples and automatically selects features that best explain their differences, avoiding manual selection of specific points or summary statistics. The procedure is appropriate for comparing samples of time series, images, spectrometric measures or similar multivariate observations. It is aimed at researchers from all fields of science, although it requires some knowledge on design of experiments, statistical testing and multidimensional data analysis.
Descrição: The Journal of Open Source Software
URI: https://doi.org/10.21105/joss.00430
http://hdl.handle.net/10437/10193
ISSN: 2475-9066
Aparece nas colecções:ECATI - Atas de Conferências Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2018_micompm.pdf119.44 kBAdobe PDFVer/Abrir


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.