Utilize este identificador para referenciar este registo: http://hdl.handle.net/10437/10189
Título: Steady state particle swarm
Autores: Fernandes, Carlos M.
Fachada, Nuno
Merelo, J. J.
Rosa, Agostinho C.
Palavras-chave: BAK–SNEPPEN MODEL
PARTICLE SWARM OPTIMIZATION
OPTIMIZATION
ALGORITHMS
ARTIFICIAL INTELLIGENCE
OTIMIZAÇÃO
ALGORITMOS
INTELIGÊNCIA ARTIFICIAL
MODELO BAK–SNEPPEN
OTIMIZAÇÃO POR ENXAME DE PARTÍCULAS
Editora: PeerJ Inc.
Citação: Fernandes, C.M., Fachada, N., Merelo, J.J. & Rosa, A.C. (2019). Steady state particle swarm. PeerJ Computer Science, 5, e202.
Resumo: This paper investigates the performance and scalability of a new update strategy for the particle swarm optimization (PSO) algorithm. The strategy is inspired by the Bak–Sneppen model of co-evolution between interacting species, which is basically a network of fitness values (representing species) that change over time according to a simple rule: the least fit species and its neighbors are iteratively replaced with random values. Following these guidelines, a steady state and dynamic update strategy for PSO algorithms is proposed: only the least fit particle and its neighbors are updated and evaluated in each time-step; the remaining particles maintain the same position and fitness, unless they meet the update criterion. The steady state PSO was tested on a set of unimodal, multimodal, noisy and rotated benchmark functions, significantly improving the quality of results and convergence speed of the standard PSOs and more sophisticated PSOs with dynamic parameters and neighborhood. A sensitivity analysis of the parameters confirms the performance enhancement with different parameter settings and scalability tests show that the algorithm behavior is consistent throughout a substantial range of solution vector dimensions.
Descrição: PeerJ Computer Science
URI: https://peerj.com/articles/cs-202/
http://hdl.handle.net/10437/10189
ISSN: 2376-5992
Aparece nas colecções:ECATI - Artigos de Revistas Internacionais com Arbitragem Científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
2019_sspso.pdf2.08 MBAdobe PDFVer/Abrir


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.