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ABSTRACT Locating the position of a remote node on a wireless network is becoming more relevant,
as we move forward in the Internet of things and in autonomous vehicles. This paper proposes a new
system to implement the location of remote nodes. A new prototype Android application has been developed
to collect real measurements and to study the performance of several smartphone’s sensors and location
algorithms, including an innovative one, based on the second order cone programming (SOCP) relaxation.
The application collects the WiFi access points information and the terminal location. An internal odometry
module developed for the prototype is used when Android’s service is unavailable. This paper compares the
performance of existing location estimators given in closed form, an existing SOCP one, and the new SOCP
location estimator proposed, which has reduced complexity. An algorithm to merge measurements from
non-identical terminals is also proposed. Cooperative and terminal stand-alone operations are compared,
showing a higher performance for SOCP-based ones, that are capable of estimating the path loss exponent
and the transmission power. The heterogeneous terminals were also used in the tests. Our results show that
the accurate positioning of static remote entities can be achieved using a single smartphone. On the other
hand, the accurate real-time positioning of the mobile terminal is provided when three or more scattered
terminal nodes cooperate sharing the samples taken synchronously.

INDEX TERMS Indoor location, odometry, localizing remote nodes without known anchors, location
algorithms, cooperative localization, android applications.

I. INTRODUCTION
Locating the position of a remote network element on a wire-
less network is becoming more relevant as these networks are
interconnecting hand-held terminals, vehicles with different
degrees of self driving-autonomy and network infrastructure
elements. In order to achieve it, one node needs to know its
own location and use the signals from remote nodes. How-
ever, providing an accurate and practical localization solution
anywhere with portable devices is still a challenge in environ-
ments where global navigation satellite systems (GNSS) sig-
nals are not available or are degraded, and where alternative
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indoor localization systems are not deployed. On the other
end, although a remote node may provide its location, some-
times it is important to validate the information received.

This paper addresses the challenge of providing a portable
localization system that locates remote nodes without requir-
ing any known position. It uses the smartphone’s sensors and
Android’s services to estimate its own location, and the WiFi
signals received to obtain the location of the remote nodes.

Fingerprinting andmultilateration are twomain approaches
for WiFi positioning [1]. Fingerprinting-based WiFi posi-
tioning usually has two operating phases: the pre-survey
phase and the online positioning phase. In the pre-survey
phase, a radio map database is created with a set of known
positions and the Received Signal Strength (RSS) values
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from available Access Points (APs) are collected. The radio
map database is used during the online positioning phase to
compare the observed RSS values with the stored ones in
order to choose the best fit. Heuristic strategies such as [2]
can be used for selecting a subset of the known APs that
maximizes accuracy for non-cooperative and crowdsourcing
based cooperative approaches. Multilateration-based WiFi
positioning calculates the ranges between the device and APs
using a wireless signal propagation model and trilateration
or multilateration algorithms, such as the ones in [3] and [4],
to estimate the position of the nodes. Fingerprinting usually
provides more accurate position solutions for the node’s own
location [1]. On the other hand, multilateration may be used
for locating itself and remote nodes. It can be used with only
the information about the position of the APs, or even without
that information. For instance, in [5], the RSS measurements
and any border GNSS location information are sent to a
central server and processed there using a genetic algorithm
that models the physical constraints to estimate the nodes
location.

Several signals can be explored to enhance or replace the
GNSS localization service [6], including the cellular net-
work in Assisted-GPS (A-GPS) [7], WiFi signals (e.g. [8]),
Angle of Arrival (AoA) (e.g. [9], [10]) and the micro-electro-
mechanical systems (MEMS) sensors present in portable
devices (e.g. [1]). A good survey about smartphone based
localization techniques is presented in [11]. MEMS sensors
can be used to implement inertial navigation system (INS)
and/or pedestrian dead reckoning (PDR) (e.g. [1], [12]) for
vehicle or pedestrian navigation applications. The INS mech-
anization calculates the position, velocity and altitude by
integrating raw data from accelerometers and gyroscopes.
However, navigation errors increase rapidly with time due to
the drift characteristics of MEMS sensors. PDR is proposed
to reduce the accumulated navigation errors for pedestrians.
It has four critical procedures: step detection [13], step/stride
length estimation, heading estimation, and 2D position esti-
mation. PDR provides a more accurate position solution
than INS, without other aiding sources [1]. Nevertheless, its
accuracy depends on other sensors, such as the gyroscope,
and on estimated parameters. Therefore, PDR/INS are usu-
ally combined with other estimation models, and they may be
switched on or off using algorithms that detect the user con-
text (e.g. indoor or outdoor) [14], [15]. WiFi fingerprinting
was used with PDR in HiMLoc [16] andWiFi multilateration
was used with PDR/INS [1] to estimate the device location,
requiring both some a priori knowledge of the site.

Simultaneous Localization and Mapping (SLAM) algo-
rithms address the localization problem assuming no prior
site information. Most SLAM solutions also combine
PDR/INS and fingerprinting, although using more elaborate
robotic sensors and mobility scenarios [17]. SLAM is a
nonconvex problem and most SLAM algorithms are based
on iterative nonlinear optimization. State-of-the-art iterative
solvers fail to converge to a global minimum of the cost
function for relatively small noise levels; hence, methods

that explore the nonconvex nature in SLAM and alterna-
tive maximum likelihood (ML) formulations were proposed
recently. These include convex relaxation methods, such as
semidefinitive programming (SDP) [17]. Other authors pro-
posed equally efficient and less complex convex relaxation
solutions [18]. Although different, the evolution of multilater-
ation algorithms followed a similar path, and some of the best
performing algorithms are also based on convex relaxation
solutions (e.g. [4], [10]). In spite of convergence to global
minima is guaranteed with such (convex) methods, it does
not necessarily (closely) correspond to the global minima of
the original nonconvex problem (the quality of the solution
depends on the tightness of the relaxations).

In this paper, the smartphone’s sensors and Android’s
services are used to implement a PDR/GNSS terminal self-
location solution. The received WiFi signals are processed
using multilateration algorithms to locate remote nodes. Sev-
eral localization algorithms are analyzed using RSS samples
collected by a smartphone in indoor scenarios, consider-
ing cooperative and non-cooperative scenarios. This paper
extends [19], which analyzed an outdoor scenario using
GNSS and a non-cooperative scenario only. The paper’s main
contributions include:
• an analysis and performance evaluation of multilatera-
tion algorithms, comparing classical static ones, ML for-
mulations, convex SDP and convex relaxation solutions
using RSS data collected in pedestrian tests;

• development of a new convex relaxation solution for the
multilateration problem;

• design of an algorithm that combines measurements
from a heterogeneous set of terminals in multilateration,
and the evaluation of its performance in a cooperative
scenario;

• performance evaluation of the accuracy of different
PDR/INS mechanisms in two different terminals.

This paper is organized as follows: the system overview is
presented in section II. Section III analyses the performance
of the Android PDR/INS odometry modules. Multilateration
algorithms are reviewed and a new algorithm is proposed in
section IV. A cooperation algorithm is presented in section V.
Section VI evaluates the performance of the algorithms con-
sidered for odometry, and non-cooperative and cooperative
localization, using RSS experimental values. Section VII
summarizes the main conclusions.

II. SYSTEM ARCHITECTURE
The system is designed to track the location of entities pos-
sessing a WiFi interface using a mobile terminal (MT). The
approach followed is illustrated in figure 1. A moving termi-
nal collects a set of RSSmeasurements of the signals received
from the tracked entities on multiple locations, registering the
MT’s location at eachmeasurement. These RSSmeasurement
vectors are used to run multilateration algorithms, which
require a minimum of three or four different measurements to
estimate a location. Given that all RSS measurements should
be done with the entities at the same position, the measuring

33714 VOLUME 7, 2019



D. Pedro et al.: Algorithms for Estimating the Location of Remote Nodes Using Smartphones

FIGURE 1. Localization scheme.

FIGURE 2. Terminal operation scheme.

MT should move much faster than the entities being tracked
if a non-cooperative mode is used. When multiple MTs coop-
erate, the individual measurements can be combined and
shared between the MTs, reducing or eliminating the neces-
sity for MT movement. On the other hand, homogenization
techniques are required to handle the measurements taken
from different MTs that have different sensors, radios and
antennas.

The main component of the architecture is the software
running in the MT, which implements the modules depicted
in figure 2 [19].

The localization module is capable of switching between
outdoor mode and indoor mode. In outdoor mode, it uses the
Android localization service, which combines GNSS, WiFi
and cellular signals to estimate the MT’s location. An odom-
etry module is used in indoor mode, to track the relative
position of the MT from the last known global position. The
current version is optimized for human use - it implements

1The app source code can be downloaded from https://github.
com/dario-pedro/wifi_finder.

FIGURE 3. Find AP interface.

FIGURE 4. Map interface.

the PDR algorithms described in section III. AnWiFi scanner
module is run concurrently, which collects the RSS vec-
tors of a selected AP using the android.net.wifi Android’s
library. In the non-cooperative mode, the vectors are fed to
the multilateration algorithm, implemented at the FindAP
module, which returns the location of the selected remote
entity. In the cooperative mode, the RSS vectors are sent to
a server, which stores them, and may run the localization
algorithms over all received vectors. The main goal of this
paper is to propose effective algorithms for both operation
modes. A prototype Android application was implemented
for the non-cooperative mode [19]1. The current prototype
application provides two visualization mechanisms for the
remote entities’ location: it can provide an arrow pointing
to the direction towards the entity (fig. 3); or, it can provide
the location of the entities in a map (fig. 4). The application
can be easily extended to other scenarios that do not involve
human users: the FindAP module can send the entities’ loca-
tions directly to an external module (e.g. autonomous driving
unit inside a vehicle) through a specific API.

For testing purposes, the application was extended to col-
lect AP’s RSS measurements, time, odometry/Android loca-
tion, allowing the evaluation of multiple algorithms with real
measured data, such as the ones presented in this paper.

III. ODOMETRY MODULE
The odometry module implements a 2D location estimator
based on a PDR. It counts steps, measures theMT orientation,
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and estimates the new location using an average step size
estimative. The odometry module is composed of two sub-
modules: a step detector and a direction detector.

The step detector was implemented based on the design
presented in [20], using the accelerometer sensor scanned
with a 320Hz sampling rate. It analyses the sequence of
extreme values of the linear combination of the 3D acceler-
ation components, Ad =

∑
s Fs, looking for local minima,

pmin, and local maxima, pmax. The algorithm compares the
last difference of extreme values pdiff = |pmax − pmin| and
the value of pdiff measured in the previous interval (denoted
by up). A new step is detected during a local extreme when
the following conditions are verified: 2/3 < pdiff/up < 3,
the acceleration direction is inverted in relation to the last
peak detected, and at least tmin ms elapsed since the last step
detected. Additionally, for comparison purposes, two addi-
tional Android step detection objects were tested: the Step
Counter Sensor (SCS) and the Step Detector Sensor (SDS)
APIs [21]. SCS and SDS implement Kalman filters, to iden-
tify the step patterns in the accelerometer. Although they are
potentially more precise, they require a training period to
calibrate the filters, which introduces an initial delaywhen the
services start (it needs an average of 27 steps). On the other
hand, after the training phase is completed, SCS and SDS
converge to almost the same number of steps, but take longer
to detect a step. This is critical in our implementation, given
that the orientation may be changing. Therefore, all results
presented in this paper used the first detector presented, based
exclusively on the accelerometer sensor.

A relevant contribution of this paper is the evaluation
of the accuracy of different direction sensor devices avail-
able in the Android operating system in two different MTs.
Multiple direction detection sub-modules were implemented
and tested, using the Android Motion Sensors API [21].
This API offers a set of software modules that interface the
physical sensors in the MTs. Direction was measured using
the Accelerometer, MagneticField (compass), Gyroscope and
Rotation Vector (RV) sensors, and fusions of signals from
multiple sensors using the [22] library. In section VI-A we
compare the performance of the fusions of: accelerometer
and compass; gravity and compass; gyroscope and RV; and
the isolated sensors calibrated gyroscope and RV sensors.
A user defined average step size is used in the application
prototype, and the tests applied a known fixed step size to
avoid introducing step-size related errors in the measured
results.

IV. LOCALIZATION ALGORITHMS
The problem of localizing a remote node is dual to the
classical localization problem. Let t denote the target with
unknown coordinates and si, i = 1, ...,N , the set of known
positions where the MT collected the target’s RSS values, Pri .
The distance corresponding to a given RSS value Pr can be
obtained using the Friis equation,

d = 10
α−Pr−10γ log10(f )

10γ , (1)

where γ represents the path loss exponent (PLE), f the carrier
frequency and α the contributions of the antennas gains and
the transmission power (assumed uniform) [23]. The mea-
sured distance is defined by

di = ‖si − t‖ + εi, (2)

where εi is the error in ith measurement that includes con-
tributions from the MT location error and due to errors in
the estimated PLE value. Errors are assumed independent.
Considering a vectorial notation, (2) can be generalized to

D = h(t)+ ε, (3)

whereD denotes the measurement vector, h the vector-valued
measurement function and ε the error vector. The objective of
a positioning method is to find the position t that minimizes
the residual between the true distances and the measured
ones, which defines a multilateration problem. One way for
obtaining an estimate of the target’s location, t∗, is via the
least square (LS) criterion, i.e,

t∗ = argmin
t
‖D− h(t)‖2 = argmin

t

N∑
i=1

(di − hi(t))2 . (4)

The following sections review several closed form estima-
tors [3] for overdetermined systems. They also review an esti-
mator based on a convex relaxation solution [4] and propose
a new one with reduced complexity in section IV-H. Note
that convex-based estimators always converge to the global
optima, but have a higher overhead.

A. SIMPLE INTERSECTION
The simple intersection method is derived by expanding the
squared range equations to 2sTi t = ‖t‖

2
+ ‖si‖2 − d2i , and

subtracting a ‘‘reference’’ one from all the other ones, which
produces a system with N − 1 linear equations. The final
solution (for more details please see [3]) is given by,

t̂ = (ATCTCA)−1ATCTCB, (5)

where

A=

2s
T
1
...

2sTN

 , B=

 ‖s1‖
2
− d21
...

‖sN‖2 − d2N

 , C=[−1(N−1)×1 IN−1] .
B. RANGE-BANCROFT
Bancroft’s method starting point is also based on an expan-
sion of the squared range equations presented above, for the
simple intersection, which can be written using matrices as
At = 1 ‖t‖2 + B, where 1 denotes a vector with all entries
equal to one. This equation can be solved by multiplying both
sides with the Moore-Penrose pseudo-inverse of A and taking
the square norm. The solution candidates, xi, are obtained
from the two roots of (6) [3], xi = ‖t‖2 , i = 1, 2,

‖p‖2 ‖t‖4 + (2pT q− 1) ‖t‖2 + ‖q‖2 = 0, (6)
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where p = (ATA)−1AT 1 and q = (ATA)−1ATB. The solu-
tion [3], is the value t̂ = pxi+q for the i that gives the smallest
residual value

∑N
i=1

(
di −

∥∥si − t̂∥∥)2.
C. BECK
Beck et al. [24] defined a procedure for computing the exact
least-quartic solution for the range equations. The procedure
uses the bisection method to find a root of a univariate strictly
monotonous function on an interval that is easily computed,
so it has guaranteed convergence. Consider the vector B
defined above, λ = ‖t‖2 and

E =

2s
T
1 −1
...

...

2sTN −1

 , P =

1 0 0
0 1 0
0 0 0

 , w =

 0
0
−

1
2

 .
The exact solution, ẑ, is obtained as

ẑ(λ) = (ETE + λP)−1(ETB− λw) , (7)

where the bisection procedure is used to find λ∗, the zero of

φ(λ) = ẑ(λ)T P̂z(λ)+ 2wT ẑ(λ). (8)

The estimated position is given by the first j components
of ẑ(λ∗), where j represents the dimension of the considered
space.

D. CHEUNG
Cheung et al. [25] provided a constrained weighted least
squares solution for range measurements. The unknowns to
be solved are the position and squared distance to first posi-
tion, s1. They assume that eachmeasurement error εi is a zero-
mean white Gaussian process with known variance σ 2

i , which
is estimated using the sample values.

Consider the matrices E , B, P and w defined above,

F =

d1 . . .
dN

 , 6 =

σ
2
1
. . .

σ 2
N

 , 9 = F6F .

Computing U and 3 from the eigenvalue decomposition(
ET9−1E

)−1
P = U

γ1 γ2
0

U−1 (9)

yields c = 2UTw, g = 2UT (ET9−1E)−1w, e =
(9−1EU )TB and f = U−1(ET9−1E)−1E9−1B.

The root λ∗ closest to zero is calculated for the following
five-root equation,

c3f3 −
λ

2
c3g3 +

2∑
i=1

cifi
1+ λγi

−
λ

2

2∑
i=1

cigi
1+ λγi

+

2∑
i=1

eifiγi
(1+ λγi)2

−
λ

2

2∑
i=1

(eigi + cifi)γi
(1+ λγi)2

+
λ2

4

2∑
i=1

cigiγi
(1+ λγi)2

= 0 , (10)

using the method described in [3], which manipulates the
equation into a fifth-degree polynomial on λ.

The estimated value of t , t̂ , corresponds to the first j
elements of the augmented state, calculated using

ẑ = (ET9−1E + λ∗P)−1(ET9−1B− λ∗w) . (11)

E. GAUSS-NEWTON
Gauss-Newton (GN) method is an iterative method to min-
imize a sum of squared function values for scenarios with
additive noise with finite variance. Some disadvantages are:
its greater computational cost compared to the methods
above, the need for an initial starting position, only finding
one candidate solution, and may exhibit divergence problems
in the presence of high noise levels or get trapped into local
minima which may result in high estimation error.

In this paper we consider the regularized GN method [3],
which reduces the divergence problems using an algorithm
that is equivalent to a Bayesian maximum-a-posteriori algo-
rithm with prior distribution chosen around the center point
of the MT positions. Let td denote the mean point of si, i =
1, ...,N and c a regularization coefficient.

The algorithm starts by calculating the initial starting posi-
tion, t0 = td and setting k = 0. The iteration cycle is:
1) Compute the Jacobian

Jk (t) =


(s1−t)T
‖(s1−t)‖
...

(sN−t)T
‖sN−t‖

 (12)

2) Define tk+1 = tk +1tk where 1tk is the least-squares
solution to(
−6−

1
2 Jk + cI

)
1tk = 6−

1
2 (h(tk )−d)+ c(t − td ),

(13)

where 6−
1
2 denotes the matrix square root inverse

operator.
3) If stopping condition ‖1tk‖ < δ is not satisfied and

k < Kmax , increment k and repeat the cycle.
The results presented in section VI were obtained by using

a maximum number of iterations of Kmax = 8, c = 10−4 and
the stopping tolerance δ = 2 ∗ 10−2.

F. LEVENBERG-MARQUARDT
The Levenberg-Marquardt (LM) algorithm is an alternative
iterative technique that locates the minimum of a function
expressed as the sum of squares of nonlinear functions [26].
LM can be thought of as a combination of gradient descent
and the GN method. When the current solution is far from
the correct one, the algorithm behaves like a gradient descent
method: slow, but guaranteed to converge. When the current
solution is close to the correct solution, it becomes a GN
method. This is implemented using a dampening factor ϑ ,
which is calculated in each iteration. A weight wi, i =
1, ...,N is used in the sum, with a value wi = 1/di2. To avoid
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divergence problems due to matrices over-dimensioning,
the measured distances are bound to di = max(di, 10−7).
As before, the algorithm starts by calculating the initial

starting position, t0 = td and defining the stopping tolerance δ
(10−4 times the function tolerance). In each step, the Jacobian
J is calculated, and tk+1 = tk + 1tk where 1tk is the least-
squares solution to

(JT J + ϑdiag(JT J ))1t = JT ε, (14)

where diag(JT J ) is a diagonal matrix consisting of the diag-
onal elements of JT J . The dampening factor ϑ is updated
based on the success of the last tk update. The cycle stops
when ‖1tk‖ < δ, or when a Kmax is reached.
LM algorithm was initially implemented using the Mat-

lab library, and latter selected for the non-collaborative
Android prototype, where it was implemented using the
org.apache.commons.math3.fitting.leastsquares.Levenberg
MarquardtOptimizer library, with a maximum number of
iterations Kmax = 1000.

G. TOMIC SOCP RELAXATION
Tomic et al. [4] derived a convex estimator, by tightly approx-
imating the ML estimator for small noise. This estimator is
based on SOCP relaxation technique.

Contrarily to the previous algorithms, this algorithm han-
dles γ and the transmission power PT as unknowns, estimat-
ing them simultaneously with the t’s position. The following
path loss model (dB) was considered,

Li = L0 + 10 γ log10
‖t − si‖
d0

+ vi , i = 1, . . . ,N , (15)

where L0 denotes the value of losses along the path at a
short reference distance d0 (‖t − si‖ ≥ d0) and vi is the log-
normal shadowing term modeled as a zero-mean Gaussian
random variable with variance σ 2

i , i.e. vi ∼ N
(
0, σ 2

i

)
. This

formulation combines (1) and (2) in a single equation.
To formulate the joint localization problem, the ML crite-

rion was considered, but finding the ML estimator, θ̂ , implies
solving the non-linear and non-convex least-squares problem,

θ̂ = argmin
θ=[t;L0;γ ]

N∑
i=1

1

σ 2
i

×[(
Li − hT θ

)
− 10gT θ log10

∥∥CT θ − si
∥∥

d0

]2
,

(16)

where h = [02×1; 1; 0], g = [03×1; 1] and C = [I2; 02×2].
The problem defined by (16) is not convex and has no
closed-form solution. Therefore, the solution proposed in [4]
estimates the position of interest following the iterative
procedure:

1) Set the initial estimate of γ, γ̂ 0 ∈ [γmin, γmax], and set
the iterator counter k = 1.

2) Solve the SOCP problem [4]:

minimize
t,g,z,η,p

p

subject to

∥∥∥∥[ 2z
p− si

]∥∥∥∥ ≤ p+ 1, ‖t − si‖ ≤ gi,

zi = ψigi − ηd0, i = 1, . . . ,N . (17)

3) Use γ̂ k−1 and t̂k−1 to compute the ML estimative of
L0, L̂0

L̂k0 =

∑N
i=1

(
Li − 10γ̂ k−1 log10

∥∥̂tk−1−si∥∥
d0

)
N

(18)

4) Use t̂k−1 and L̂k0 to find the ML estimative of γ , γ̂

γ̂ k =

∑N
i=1 10 log10

∥∥̂tk−1−si∥∥
d0

(
Li − L̂k0

)
∑N

i=1

(
10 log10

‖̂tk−1−si‖
d0

Li − L̂k0
)2 (19)

If γ̂ k /∈ [γmin, γmax] the process should be stopped at
this point and use t̂k−1 as the final estimate.

5) If k > KT
max (K

T
max represents the maximum number of

iterations) it must stop and consider t̂k as an estimate;
Otherwise repeat step 2 with the help of γ̂ k and L̂k0 and
increment k .

This type of algorithm (which uses convex optimization)
has a large processing time that is typically 103 times higher
than the previous iterative ones.

H. PEDRO-TOMIC SOCP RELAXATION
The Pedro-Tomic (PT) SOCP relaxation algorithm is a new
SOCP based algorithm proposed in this paper, which trades
off accuracy for a lower complexity. Rewriting the problem
propagation model (15) in function of the RSS, we get

Pi = P0 − 10 γ log10
‖t − si‖
d0

− νi , i = 1, . . . ,N (20)

where P0 denotes the RSS value at a reference distance
d0 (‖t − si‖ ≥ d0) and νi is modelled by a zero-mean Gaus-
sian random variable with variance σ 2

i , i.e. νi ∼ N
(
0, σ 2

i

)
.

Solving the equation with respect to the distance between
the emitter t and the measurement point si we obtain,

‖t − si‖ = e
P0
ρ e−

Pi
ρ e−

νi
ρ (21)

where ρ = 10γ
ln 10 . Defining λi = e

Pi
ρ and considering a first

order Taylor series approximation for the last term in (21) we
define,

λi ‖t − si‖ ≈ e
P0
ρ

(
1−

νi

ρ

)
≈ e

P0
ρ − εi, (22)

where εi ∼ N
(
0, e

2P0
ρ
σ 2i
ρ2

)
. By squaring (22) and defining

θ = e
2 P0
ρ , we obtain

θ ≈ λ2i ‖t − si‖
2
+ 2λi ‖t − si‖ εi + ε2i . (23)

Considering εi ≈ 0, we can neglect the second order noise
term. In this way, we arrive at our non-linear and non-convex
least squares problem

(̂ti, θ̂i) = argmin
t,θ

N∑
i=1

(
θ − λ2i ‖t − si‖

2

2λi ‖t − si‖

)2

. (24)
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Starting from ‖t − si‖2 expression and introducing y = ‖t‖2,
it can be written as

minimize
t,θ,y

N∑
i=1

[
θ − λ2i

(
y− 2sTi t + ‖si‖

2)
2λi ‖t − si‖

]2
subject to y = ‖t‖2 (25)

Additionally, an epigraph variable ζ was introduced and a
SOCP relaxation2 was applied, to get

minimize
t,θ,y,ζ

ζ

subject to ∥∥∥∥[2θ − 2λ2i
(
y− 2 sTi t + ‖si‖

2)
4λ2i

(
y− 2 sTi t + ‖si‖

2)
− ζ

]∥∥∥∥
≤ 4λ2i

(
y− 2 sTi t + ‖si‖

2
)
+ ζ ,∥∥∥∥[ 2t

y− 1

]∥∥∥∥ ≤ y+ 1 (26)

This minimization problem can be treated iteratively using
the following algorithm:

1) Set the initial estimate of γ, γ̂ 0 ∈ [γmin, γmax].
2) Solve the SOCP problem defined by (26) for the initial

estimate of t , t̂0.
3) Use γ̂ 0 and t̂0 to compute the ML estimative of P00, P̂

0
0,

using

P̂0 =

∑N
i=1

(
Pi − 10γ 0 log10

∥∥̂t0−si∥∥
d0

)
N

. (27)

4) Obtain

f0 =
∑N

i=1

[(̂
P00 − Pi

)
− 10 γ̂ 0 log10

∥∥̂t0−si∥∥
d0

]2
,

the initial cost function value, using
{̂
t0, P̂00, γ̂

0
}
.

5) Set the iterator counter k = 1.
6) Use t̂k−1 and L̂k−10 to compute the ML estimative of γ ,

γ̂ k =

∑N
i=1 10 log10

∥∥̂tk−1−si∥∥
d0

(
P̂k−10 − Pi

)
∑N

i=1

[
10 log10

‖̂tk−1−si‖
d0

(
P̂k−10 − Pi

)]2 .
(28)

If γ̂ k /∈ [γmin, γmax] the process should be stopped at
this point and use t̂k−1 as the final estimate. Otherwise,

θ is estimated using θ̂k = exp
(

2P̂k0−1
ρ̂k−1

)
.

7) Use γ̂ k , P̂k−10 and θ̂k to solve (26) and get t estimate, t̂k .
8) Use (27) to get P0 estimate, P̂k0.

9) Get fk =
∑N

i=1

[(̂
Pk0 − Pi

)
− 10 γ̂ k log10

‖t̂k−si‖
d0

]2
,

the cost function value. If |fk−fk−1|fk−1
< ε ( ε denotes the

stopping threshold ) or k > Kmax ( Kmax represents the
maximum number of iterations ) it must stop and

2SOCP relaxation used:
(
x
y

)2
= z⇒

∥∥∥∥[ 2x
y2 − z

]∥∥∥∥ ≤ y2 + z.

consider t̂k as estimate; Otherwise repeat step 6 with
the help of γ̂ k and P̂k0 and increment k .

V. COOPERATIVE LOCALIZATION
The localization algorithms presented above require the col-
lection of a set of RSS measurements at different locations
of the remote node. If the remote node is allowed to move,
the MT has to move much faster. Cooperation between MTs
can be used as an alternative mechanism to speed the mea-
surements collection, allowing the tracking of mobile objects.
The communication mechanism can also be used to offload
the computational cost from the MT to an infrastructure’s
server, contributing to save the MT’s battery.

Cooperation between heterogeneous MTs using the loca-
tion provided by the odometry module introduces new
challenges:
• TheMT’s coordinates must refer to the same referential;
• The different antenna gains Gr must be homogenized,
to allow the direct combination of RSS values measured
by different MT’s types;

• A communication service is required to coordinate RSS
vector exchange, handle the data homogenization tasks
and provide the computation services, when available.

Most of these challenges can be easily addressed when a
set of anchor APs is deployed with known location and trans-
mission powers, which can be used to calibrate the individual
measurements. When no anchor APs are available, the MT’s
coordinates and the antenna gains can be estimated using the
local RSS measurements to a set of common remote entities
that can be located by the cooperating MTs. We consider
from now on, and without any loss of generality, that remote
entities are APs because the algorithms use the SSID signal.
If another signal was used, the nodes could be ordinary nodes.
The MTs coordinate’s offset and axis misalignment can be
estimated comparing the location of a set of APs. The antenna
gain can be easily estimated running an algorithm that esti-
mates P0 (the transmission power of the common AP), such
as the SOCP ones presented in sections IV-G and IV-H.
In order to use measurements from different MTs, all indi-
vidual measurements have to be corrected in relation to a
common reference and power level. The results presented
in this paper consider a single common AP, and have their
different path loss coefficient values and the distances to the
axis origin compensated. This algorithm does not compensate
unaligned axis directions in the measurements collected by
differentMTs, which would require using more commonAPs
to calibrate the directions.

The algorithm applied to correct the RSS values of each
individual measurement was the following:

1) One AP is selected as a reference and its position is
calculated using one of the described algorithms and
local RSS measurements exclusively;

2) The Tomic SOCP algorithm is run to estimate P0’s
value, P̂0, and γ ’s value, γ̂ .

Given P̂0 and γ̂ , the individual measurements can be cor-
rected to a given reference value Pr0 and d

r
0 by replacing the
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α value in (1) by α̂i, calculated using (29).

α̂i = 20 log10

(
d r0 f 10

P̂0−P
r
0

10γ̂

)
−
∣∣Pr0∣∣ . (29)

FIGURE 5. Testing scenarios in NOVA EE building.

VI. PERFORMANCE EVALUATION
The performance of the odometry module and the local-
ization algorithms was analyzed considering an indoor sce-
nario, at the third floor of the Electrical Engineering (EE)
Department building at NOVAUniversity of Lisbon Campus,
represented in figure 5. Two two-way walking paths were
considered: i) OA path in a 16.5 m straight line path, executed
in 33 steps with an average of 50 cm each; ii) OB path is a
29 m path with two turns, performed in 58 steps. A Cisco
Aironet 1100 AP is placed on the ceiling, at the position
depicted by a red cross, and using frequency 2452 MHz
(channel 6). The smartphone is placed 1.72 m below the
ceiling. Three smartphones were used in the tests: one Sony
XPeria Z1 Compact running Android 5.1.1 (MT1), one One-
Plus 2 running Android 6.0.1 (MT2) and one Xiaomi Redmi
Note 5A Prime (MT3) running Android 7.1.2. The same
application was run in all MTs.

The first subsection evaluates the influence of several
direction detecting sensors on the accuracy of the MT’s loca-
tion estimation (si) by the odometry module; the second anal-
yses the variation of the path loss in the test scenario and the
third and fourth ones evaluate the accuracy of the localization
algorithms in locating the AP represented in figure 5 consid-
ering respectively non-cooperative and cooperative modes.

A. ODOMETRY ACCURACY
This section’s main objective is to evaluate the MT’s location
accuracy, focusing on the influence of the direction estima-
tion sensors, in a path with a known number of fixed sized
steps (OA). The step detector counted 33 ± 1 steps in more
than 99% of the tests, showing that most of the odometry’s
location errors are due to direction errors.

Figures 6 and 7 depict one sample run using respectively
MT1 and MT2. It can be seen that the overall direction
detected in the path’s farthest location varies with the sensors
and the MT used. The true location of the path’s end point
is also shown, located at X = 16.4 m, Y = 2 m. The fig-
ures show that the two methods based on the compass sensor
(Acc+Comp and Grav+Comp) estimate approximately the
correct direction at the extreme points of the paths reason-
ablywell. However, they are strongly influenced by variations

FIGURE 6. Odometry detected path using MT1.

FIGURE 7. Odometry detected path using MT2.

in the magnetic field near X ≈ 8 m, producing similar
deviations in MT1 and MT2. MT1 and MT2 had completely
different outputs for the calibrated gyroscope sensor (Gyro),
demonstrating a very strong dependence on the hardware.
The calibrated gyroscope sensor had the best performance for
MT1 and the worst for MT2. The Android’s RV software sen-
sor combines the information of the accelerometer, gyroscope
and compass. RV sensor produced a location path where it is
still visible the magnetic field variation near X ≈ 8 m and
some direction deviation for MT1 and MT2. The best immu-
nity to the magnetic field variation was achieved combining
the RV sensor and the calibrated gyroscope using the Kalman
filter implemented in [22] (RV+Gyro), although introducing
some deviation in the overall direction for MT2. In order
to reduce the influence of the step detection errors in the
accuracy metric, we measured the average deviation for all
tests usingMT1 andMT2 at the intermediate farthest point of
the path and the deviation at the end of the tests (which should
coincide with the starting point), denoted respectively as εint
and εend . The results represented in Table 1 show that the
best average accuracy was achieved using the RV sensor &
Calibrated Gyroscope and the Gravity Sensor & Compass
sensors, with a slight advantage for the first one, with an
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TABLE 1. Odometry average deviation.

FIGURE 8. RSS fitting using MT1 measurements in OA path.

average location error below 2m at both measurement points.
They also highlight the importance of the calibration of the
gyroscope. When the gyroscope is used without being cali-
brated with the RV sensor, the results show that the Kalman
filter is not capable of compensating the estimation error.
Given its greater immunity to the variations of the magnetic
field, the RV sensor & Calibrated Gyroscope was selected to
be used in the localization accuracy tests.

B. PATH LOSS VARIATION
Most of the localization algorithms assume a constant PLE.
To validate this assumption, 75 samples of RSS were mea-
sured using MT1 in path OA in the positions with horizontal
distances of 0, 1, ..., 11 m to the AP, faced to the AP. Figure 8
depicts the measured values and the average values for each
distance. Considering horizontal distances equal to or above
2 m (corresponding to a total distance to the AP of 2.64 m,
equivalent to 4.2 dB), the linear regression of the average
values of the measured RSS (fit2) obtains a good estimate
(rss = −3.2804 × 10 log10(d) − 28.5016 dBm), with a
Root Mean Square Error (RMSE) of 2.66 dB and a R2 value
of 0.8806. The estimated PLE was 3.2804, with a 95% confi-
dence interval of [2.296, 4.265]. On the other hand, consider-
ing horizontal distances equal to or above 1 m (corresponding
to a total distance to the AP of 1.99 m ≡ 2.99 dB), fit1,
the best estimate is rss = −2.71× 10 log10(d)− 33.48 dBm,
with a RMSE of 3.20 dBm and a R2 value of 0.8288 (less
accurate). The estimated PLE was 2.7075, with a 95% confi-
dence interval of [1.7797, 3.6353]. These high variances are
compatible with the measurements spread shown for each
distance depicted in figure 8. The 99% confidence interval
is plotted for both fitting curves, showing that all samples

are within the interval. When the distance 0 m is considered
(not plotted), the linear regression fit estimates a smaller
PLE (2.17) but introduces a higher error (R2 of 0.7185 and
a RMSE of 3.9397 dB). When the horizontal distance is
0 m or 1 m, the average received RSS tends to decrease
compared to value measured at 2 m, due to the narrower
propagation paths available between the smartphone and the
AP, related with the directionality of the antennas. This shows
that depending on the sample set considered, a different PLE
value would be more adequate, probably contained in the
interval [2, 4]. The RMSE was calculated using,

RMSE =

√√√√ M∑
i=1

∥∥t − t̂i∥∥2
M

, (30)

whereM denotes the size of the measurement set.

C. NON-COOPERATIVE LOCALIZATION ACCURACY
The localization accuracy tests were done using 672 mea-
surements collected using MT1 (85%), MT2 (5%) and
MT3 (10%) in OA and OB paths depicted in figure 5,
as described above. During the tests, the Android application
was configured to collect periodically the last AP’s RSS
measurement, the MT’s location from the odometry service
and the sample time. Each test was donemoving at an average
speed ranging from 1 to 3 km/h (they lasted between 45 s and
105 s for path OA and between 50 s and 140 s for path OB)
and using two sampling periods: one and five seconds. All
algorithms described in section IV were implemented in
MATLAB and run using the data collected, to allow a fair
comparison. Moreover, the parameter values γ 0

=3, γmin=2,
γmax = 4 and KT

max = 3 were considered as input param-
eters for the algorithms, taking into account the PLE values
measured in the previous section. The Euclidean distance to
the (known) exact location of the AP was the metric used to
compare the accuracy of one estimated location. The over-
all performance metric considered for each algorithm was
the RMSE.

FIGURE 9. Odometry estimated location and RSS measured by MT1.
(a) Odometry. (b) RSS.

As an example, figures 9 and 10 depict the RSS values
and the MT’s location measured in two of the runs on path
OA with a sampling period of one second, respectively using
MT1 and MT2. The AP position is depicted in relation to
each MT’s measured direction, showing that the coordinates
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FIGURE 10. Odometry estimated location and RSS measured by MT2.
(a) Odometry. (b) RSS.

FIGURE 11. Average AP’s non-cooperative location accuracy for MT1.

are not fully aligned - an offset of 2 m exists between MT1’s
and MT2’s estimated AP position. The figures also show the
presence of a significant additive noise in the measured RSS,
possibly due to the presence of other APs using the same
channel placed on the wall in the corridor of the EE depart-
ment building. The corridor is an open space of the three
floors, and therefore the signals interfere easily. This effect
was identified in initial RSS measurements made with a
static MT, where RSS fluctuations of up to 10 dBm were
measured. The expected variation of the RSS during the run
was measured by MT1, with two relative peak values when
the MT passed near the AP and lower values at the end and
at the begin of the tests. On the other hand, the additive noise
seems to be higher for MT2, which measured a less defined
pattern than when MT1 passed near the AP.

Figure 11 shows the accuracy achieved when the algo-
rithms presented in section IV were used to estimate the
position of theAP using the RSS samples depicted in figure 9.
The figure illustrates how the accuracy evolves as more sam-
ples are added to the RSS vector during the run. It shows
that the Gauss-Netwon method tends not to converge and the
simple intersection tends to exhibit a low accuracy which
may persist through all the run. All other algorithms tend
to stay below a baseline accuracy after an initial transition
phase, as an increased range of RSS values becomes avail-
able and the increased independence of the samples starts
to allow reducing the effect of the RSS measurement errors.
The highest accuracy is measured after having 20 samples,
after first passing through the AP. The fastest algorithms to
achieve a consistent accuracy below 5 m were Beck, Cheung
and Levenberg-Marquardt (LM), after 6 samples for MT1.

The LM algorithm has the additional advantage of achieving
a higher accuracy when samples with higher RSS values are
available near the AP, as is shown between samples 22 and
28 for MT1. On the other hand, the figure shows that the
SOCP methods (Tomic and PT SOCP Relaxation) tend to
require more samples to achieve the 5 m accuracy (around
15 samples), but converge with a higher accuracy. Besides
the AP location, SOCP algorithms estimate the path loss and
transmission powers. Therefore, they require more samples
to converge, but are able to adapt to scenarios where these
parameters diverge from the predefined ones.

The best accuracy measured in the experiment depicted
in figure 11 is overly optimistic because the localization
algorithms were applied over all samples collected in the
experiment, where a significant set of RSS and MT location
samples have very low interfering noise and location error.
In practice, the number of samples used in the algorithms
is upper limited by CPU or RAM limitations. Therefore,
the analysis that follows for the accuracy of the algorithms
considers a window size, W , which defines the exact length
of the vector of samples provided to the algorithms.

FIGURE 12. ocation accuracy for path OA with different window sizes
and T = 5 s.

Figures 12 and 13 depict the location accuracy measured
with a sampling period of T = 5s respectively on path OA
(209 samples) and OB (97 samples), using MT1 and MT3.
Figure 14 shows the location accuracy measured with T = 1
s for OA andOB (respectivelywith 271 and 95 samples) using
MT1, MT2 and MT3. Figures 12, 13 and 14 depict the aver-
age error and the 95% confidence interval for a varying win-
dow size starting atW = 3. They also depict the average error
when all the measurements collected until a given instant
are used, starting with 3 samples, represented at W = 1.
It can be seen that the measured average error is above 2 m
for all algorithms and setups tested, but the error tends to
reduce for a larger window, as expected. As more samples are
included, there is an higher probability of having points with
higher accuracy in the sample set, and the algorithms tend to
weight more these points. On the other hand, the variation is

33722 VOLUME 7, 2019



D. Pedro et al.: Algorithms for Estimating the Location of Remote Nodes Using Smartphones

FIGURE 13. Location accuracy for path OB with different window sizes
and T = 5 s.

FIGURE 14. Location accuracy for mixed paths with different window
sizes for T = 1 s.

not regular. The influence of the longer runs is higher for
higher window values, producing a variation in the contri-
bution of the runs to the average. The measurements with
an unlimited window include measurements with size start-
ing with W = 3 until the maximum number of samples
reached. Therefore, they tend to be less precise compared
with the error measured for a large fixed window size (spe-
cially for T = 5 s), which does not account for errors with
small window sizes. Tomic SOCP algorithm outperforms
the others considering a fixed window size and a unlimited
window, except for PT SOCP for larger window sizes on
path OA with T = 5 s. PT SOCP has the second lower
error in most conditions. It is less complex than Tomic
SOCP and it seems to require a window of 10 or more
samples, to approach the performance of Tomic SOCP. Beck
and Cheung algorithms have very similar accuracies, except
for very small windows, where Beck outperforms Cheung.
LM algorithm has (figures 11 and 13) some periods and
window values with high performance. But it is not fully

FIGURE 15. Sensitivity of the location accuracy to γ 0 for mixed paths
with different window sizes for T = 1 s. (a) W = 4. (b) W = 30.

consistent for all tested scenarios, showing some performance
degradation for intermediate window values. Gauss-Newton
algorithm produced the highest errors (above 10 m). The
results show that when the window size is high, the sim-
ple algorithm produces acceptable results, specially for a
larger sample time, where the correlation between samples is
lower.

The sensitivity of the location algorithms to γ 0 value is
depicted in figure 15 for the conditions of figure 14 in the
interval [2.5, 3.5]. It is shown that for a short window size
of W = 4, Pedro-Tomic SOCP algorithm is more sensitive
than the other ones, but this effect is minimized when a larger
window size is considered (W = 30).

It is not surprising that SOCP algorithms outperform least
squares ones. The latter ones are based on sequences of linear
approximations which usually lead to poor localization accu-
racy in environments with high noise powers. On the other
hand, SOCP methods (and convex-based methods in general)
apply tight approximations that do not require linearization
of the measurement model, and are thus more robust to noise-
corrupted measurements. Nevertheless, this gain in the accu-
racy of SOCP methods comes with a certain cost in terms of
the computational complexity. Figure 16 depicts the average
processing time for all the algorithms on all the samples
used in this section, measured in a Linux machine with an
Intel Core i7-4790 processor and 8GB of DDR3-1600 RAM,
running Matlab and CVX. The 95% confidence interval
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FIGURE 16. Processing time for different vector sizes.

TABLE 2. RMSE and calculation time for W = 30.

is represented, which is small for all algorithms. It shows a
trade-off between accuracy and processing complexity, where
the higher accuracies measured also have an higher process-
ing cost. The SOCP ones have higher processing require-
ments, even for a low number of samples, increasing with
the vector size. The simple algorithm also has a significant
increase with the vector size due to the matrix inversion oper-
ation. It can be seen that LM is the thirdmore computationally
intensive algorithm in the Matlab implementation after the
SOCP ones. For small window sizes, Beck’s algorithm shows
some misbehaving when the samples are correlated - when it
is looking for valid bissection limits.

Table 2 presents the RMSE for a window of W = 30 with
a sampling period T = 5 s for path OB and for T = 1
s, whose average errors are depicted in figures 13 and 14.
Table 2 also presents the average calculation time (Run-
time) used by the algorithms in MATLAB for a measure-
ment vector with 30 samples. In order to run the Android
application in real-time, mitigate old readings effects and
process estimations without influencing the application flu-
idity, we decided to limit the RSS measurements stored in
the Android application prototype to 30 samples. Using the
org.apache.commons.math3 library, we were able to measure
an average run time of 13.47 ms with the prototype appli-
cation running in MT2. Therefore, due to its good trade-
off between accuracy and execution time, this algorithm was

FIGURE 17. Location accuracy indoor for mixed path without cooperation.

FIGURE 18. Location accuracy indoor for mixed path with cooperation
between 2 MTs. (a) Synchronized. (b) Scattered.

chosen for the Android application implementation for non-
cooperative localization [19]. PT SOCP algorithm is four
times lighter than Tomic SOCP, but it is still about 100 times
slower than LM. Therefore, although SOCP algorithms are
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FIGURE 19. Location accuracy for mixed path with cooperation
between 3 MTs. (a) Synchronized. (b) Scattered.

more accurate, they are not suited yet for running in a typical
mobile phone. But they may be suitable for a cooperative
centralized service implementation.

D. COOPERATIVE LOCALIZATION ACCURACY
This section evaluates the accuracy of the location algorithms
when multiple measurements of MT1, MT2 and MT3 are
combined using the algorithm described in section V. Non-
cooperative mode requires at least three measurements in
different locations to localize a remote node. When G MTs
cooperate, and the samples collected by each individual MT
are shared by all of them synchronously, the individual num-
ber of samples required to have a window W is reduced
to dW/Ge, where d e denotes the minimum integer value
above a real number.

A subset of the initial measurements was considered in
the next results, composed by 176 samples captured in 4
runs (2 in OA and 2 in OB), 2 of MT1, 1 of MT2 and
1 of MT3, with T = 1 s. Given that the effectiveness
of the algorithms depends on how independent the samples

FIGURE 20. Location accuracy for mixed path with cooperation
between 4 MTs. (a) Synchronized. (b) Scattered.

collected are, two extreme scenarios were considered in the
experiments: in a synchronized scenario, all MTs start from
position O and follow their path until the first returns to the
starting point; in a scattered scenario, the MTs start from dif-
ferent positions in a cooperation group (fromO, A or B). This
was implemented using the same sequences of RSS samples
shifted to start in position A or B. The α̂i and confidence inter-
vals estimated by MT1, MT2 and MT3 using the cooperation
algorithm proposed were respectively of−40.72±0.64 dBm,
−37.12±1.23 dBm, and−38.55±0.59 dBm, denoting higher
antenna gains for the largest terminals, MT2 and MT3.

The experiments compare the average accuracy achieved
in the following conditions: all four runs when MTs do not
cooperate; the six combinations of runs cooperation 2 by 2;
the four combinations of runs cooperation 3 by 3; all 4 runs
cooperate (two MTs started from 0 in the scattered scenario).
The accuracy measured for a number of MT samples for
cooperation of 2, 3 and 4 MTs are depicted respectively in
figures 18, 19 and 20. The average accuracy when no cooper-
ation is used is depicted in figure 17. The results show that the

VOLUME 7, 2019 33725



D. Pedro et al.: Algorithms for Estimating the Location of Remote Nodes Using Smartphones

cooperative algorithm is capable of handling measurements
from heterogeneous MTs, and to increase the accuracy and
reduce the sampling period. They show that the accuracy is
substantially improved for a given number of samples when
more MTs cooperate, and that with 3 or 4 cooperating, it is
possible to use a single sample to localize a remote node with
an accuracy of 4 m or lower using Tomic SOCP algorithm.
It is visible that scattering contributes significantly to reduce
the localization error, allowing a high accuracy with a very
low number of samples. The best accuracy achieved using
only one sample is shown in figure 20(b) - with 4 MTs
cooperating it was possible to have an accuracy consistently
below 3 m using Tomic SOCP and below 3.5 m using PT
SOCP algorithms (slightly higher for the other algorithms,
except for the Simple). With 3MTs cooperating, it is possible
to have an accuracy near 3 m using Tomic SOCP algo-
rithm. Therefore, these results show that real-time tracking
of remote nodes is possible by running coordinated scattered
scan nodes that exchange RSS samples.

VII. CONCLUSION
This paper compared the performance of several localiza-
tion algorithms, using real RSS data measurements acquired
through smartphones inside a building, considering coop-
erative and stand-alone operations. It also presented a pro-
totype Android application that implements the best suited
non-cooperative algorithm. Our experimental results showed
that it is possible for a MT to estimate the position of an
AP node inside a building with a bounded error. The work
evaluated the accuracy of the odometry module implemented
to complement the Android’s location service and of the
AP’s estimated location. They showed that PT-SOCP and
Tomic-SOCP trade off an higher accuracy in exchange for an
higher processing overhead, compared to the other algorithms
tested. On the other hand, when three or more scattered MTs
cooperate, it is possible to localize a remote node using a
single local sample with a small error for Tomic-SOCP or
PT-SOCP.

This paper only studied odometry based smartphone’s
location measurements, but these can be combined with
GNSS based ones. Future work will include the study of
alternative mechanisms to handle heterogeneous sets of APs
and terminals, namely the use of a more extensive set of
reference APs, to further reduce the errors introduced by
measurements from different MTs. New localization algo-
rithms are also envisioned, which combine SOCP and LM
approaches.
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