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Abstract: This work addresses the problem of target localization in adverse non-line-of-sight (NLOS)
environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is
inspired by a recently published work in which authors discuss about a critical distance below and
above which employing combined RSS-TOA measurements is inferior to employing RSS-only and
TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered
target localization problem and study their performance against their counterparts that employ each
individual measurement exclusively. It is shown that the hybrid approach is not the best one by
default. Thus, we propose a simple heuristic approach to choose the best measurement for each link,
and we show that it can enhance the performance of an estimator. The new approach implicitly
relies on the concept of the critical distance, but does not assume certain link parameters as given.
Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain
extent, but they indicate that more work is required for NLOS environments. Moreover, they show
that the heuristic approach works well, matching or even improving the performance of the best
fixed choice in all considered scenarios.

Keywords: target localization; integrated measurements; received signal strength (RSS); time of
arrival (TOA); critical distance

1. Introduction

The aspiration for precise knowledge about the location of objects and/or people has motivated
a great deal of scientific research recently [1–22]. This is due to a firm growth of the range of enabling
devices and technologies, as well as the need for seamless solutions for location-based services. Besides
localization precision, a common requirement for emerging solutions is that they are cost-restrained,
both in terms of the financial and computational cost. Therefore, development of different localization
strategies from already deployed technologies, e.g., from various terrestrial radio frequency sources is
of great practical interest. Among others, these include concepts based on received signal strength
(RSS), angle of arrival, time of arrival (TOA), or a combination of them [6,9,16,18–22].

Much work has been done regarding target localization based on integrated RSS and TOA
measurements [18–22]. The authors in [23] and [20] studied the range estimation problem based on
these two quantities. The authors in [23] employed the Newton-Raphson (NR) method to obtain
a sub-optimal hybrid RSS-TOA ranging estimator for indoor non-line of sight NLOS environments
in a closed-form. A joint ad-hoc (JAH) relaxation of hybrid likelihood function, which offers a good
bias-variance trade-off to the derived ranging estimator was proposed in [20]. Although NR and JAH
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are originally designed for range estimation, after getting the range estimates, their generalization
to the target localization problem is straightforward, for example through the use of a squared
range approach [24]. In [18,21], the target localization problem in mixed line of sight (LOS)/NLOS
environments was addressed. The authors in [18] first identified the type of the path for all links by
using Nakagami distribution and then proposed a weighted least squares (WLS) estimator which
utilizes TOA-only/RSS-only measurements if the link is identified as LOS/NLOS. An iterative
squared range WLS estimator was proposed in [21]. The authors in [21] partially mitigate the negative
influence of NLOS biases by approximating them by a single (mean) parameter, and then applying
a simple alternating procedure to get an estimate of the target location. In [22], the authors considered
a worst-case scenario in which they assumed that all links are NLOS. Based on this, and the assumption
that the magnitude of the NLOS bias is (imperfectly) known, a min-max problem was derived and
a robust estimator given in a generalized trust region sub-problem (GTRS) framework was proposed.

This work is inspired by the recently published work in [20], where the authors argued that
fusion of RSS and TOA measurements does not necessarily bring benefit by default in comparison
with RSS-only and/or TOA-only measurements. Based on a theoretical analysis, they determined
a formula to compute the value of a critical distance, around which the hybrid measurements should
offer gain, whereas for links far below or above this value, TOA-only and RSS-only measurements
should dominate, respectively. It is a well known fact that RSS measurements are beneficial for
short-ranges, whereas the TOA ones are well suited for long-range links [1]. Hence, the intuition
presented in [20] is that if one measurement is much more accurate than the other one, there is little or
no advantage in coupling them together, i.e., the more accurate measurement should be employed
only. Nevertheless, in practice, the real challenge in this case is to know which of the measurements is
more accurate.

Even though the authors in [20] derived a formula to determine the critical distance, this formula
is based on accurate knowledge of certain parameters (for instance, noise powers and path loss
exponent (PLE)). This assumption is at least optimistic, since it is very unlikely that it stands in
practice. Moreover, they considered a ranging problem based on hybrid RSS and TOA quantities,
where the main goal was to estimate the distance of each link in line-of-sight (LOS) environments only.
In huge contrast to [20], here we consider target localization problem, i.e., our goal is to determine the
estimation of target’s location. To do so, both RSS and TOA observations are employed and mixed
LOS/NLOS environments are investigated. We exploit the state-of-the-art estimators in [18–22] for
the problem of interest and we study their performance in different scenarios and compare it with
their counterparts that employ RSS-only and TOA-only measurements. In addition, we derive a novel
heuristic approach to select the best measurement for each link based on relative difference in RSS and
TOA measurements, which we test on the estimator presented in [21]. This heuristic approach does
not depend on the knowledge about noise powers, and can match or even better the performance of
the best individual option, which highly differs in considered scenarios.

2. Problem Formulation

Let us consider a p-dimensional (p = 2 or 3) sensor network comprising N reference sensors with
known locations (called anchors) and a sensor whose location we wish to determine (called target).
It is assumed that the target emits a signal to anchors, which are suitably equipped to withdraw RSS
and TOA information from the received signal.

According to [2,3,13,18,21,23,25,26], RSS and TOA in NLOS conditions can be modeled as

Pi = P0 − bi − 10γ log10
‖x− ai‖

d0
+ ni, (1a)

di = ‖x− ai‖+ βi + mi, (1b)
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respectively, where P0 (dBm) is the target’s transmit power, bi (dB) and βi (m) are the (positive)
NLOS biases (bi = βi = 0 if i ∈ Ll , and bi, βi > 0 if i ∈ Ln, with Ll , Ln representing the set of all
LOS and NLOS links, respectively), γ is the path loss exponent, x, ai represent the true target’s and
i-th anchor’s location (i = 1, ..., N), respectively, d0 is a reference distance (‖x− ai‖ ≥ d0), ni is the
log-normal shadowing term (dB) modeled as a zero-mean Gaussian random variable with variance σ2

ni
,

i.e., ni ∼ N (0, σ2
ni
), and mi is the measurement noise (m) modeled as mi ∼ N (0, σ2

mi
). Moreover, many

authors assume that the magnitudes of the NLOS biases are bounded by a known constant [5,7,17],
i.e., 0 ≤ bi ≤ bmax and 0 ≤ βi ≤ βmax.

If all RSS and TOA measurements are stacked in a single vector, i.e., P = [Pi]
T and d = [di]

T

(P, d ∈ RN), one can write the joint likelihood function as

Λ(P, d|x, bi, βi) = p(P|x, bi) p(d|x, βi) =
1√

2πσ2
ni σ2

mi

exp

−
(

Pi−P0+bi+10γ log10
‖x−ai‖

d0

)2
σ2

mi
+(di−‖x−ai‖−βi)

2
σ2

ni

σ2
ni σ2

mi

,
(2)

with p(•) representing the probability density function (PDF). If the RSS and TOA measurements
are taken from independent sources, the above equation is the exact likelihood function [20]. This
assumption is not unreasonable, as the authors in [23,27] showed by performing experimental
measurements; the observations withdrawn from the same signal are weakly correlated.

If one maximizes the joint PDF of the RSS and TOA observations [10,12,14,28–30], the hybrid
maximum likelihood (ML) estimator of x, bi and βi is derived as

{
x̂, b̂i, β̂i

}
= arg min

x,bi ,βi

N

∑
i=1(

Pi−P0+bi+10γ log10
‖x−ai‖

d0

)2
σ2

mi
+(di−‖x−ai‖−βi)

2
σ2

ni

σ2
ni σ2

mi
.

(3)

The problem in (3) is highly non-convex and does not have a closed-form solution. Furthermore,
in practice, it is hard to distinguish between LOS/NLOS links; hence, (3) is also under-determined, since
the number of unknowns (2N + p) is greater than the number of observations (2N). Therefore, in order
to solve (3), some approximations are required. In the following section, we present various solutions
available in the literature that circumvent the non-convexity of (3) by applying different approaches.

3. Target Localization Using Integrated RSS and TOA Measurements

In this section, a brief overview of the existing localization algorithms based on combined RSS and
TOA measurements are presented first [14,18,20,21,23]. These algorithms serve as the state-of-the-art
for the considered problem, and will be used in Section 5 to acquire a set of simulation results for the
purpose of our discussion. Then, a heuristic approach to choose the best measurement (e.g., RSS-only,
TOA-only or RSS-TOA) for each link, based on relative difference of the estimated distance from the
gathered RSS and TOA observations, is proposed.

3.1. HWLS Algorithm

The authors in [18] first assumed that they can distinguish between LOS/NLOS links by using
a Nakagami-m distribution. Nevertheless, note that perfect distinction between LOS/NLOS links is
almost impossible in practice. Then, they disregarded the noise and derived the estimated ranges
based on the RSS and TOA measurements in (1a) and (1b), i.e.,
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r̂RSS
i = d010

P0−Pi−bi
10γ , (4a)

r̂TOA
i = di − βi. (4b)

After squaring (4a) and (4b) and applying simple algebraic manipulations, the following relation
was established, written in a matrix notation.

Gθ = h, (5)

where

G =



aT
1 − 1

2
...

...
aT

N − 1
2

aT
1 − 1

2
...

...
aT

N − 1
2


, θ =

[
x
Q

]
, h =



1
2

(
‖a1‖2 − (r̂RSS

1 )
2
γ

)
...

1
2

(
‖aN‖2 − (r̂RSS

N )
2
γ

)
1
2

(
‖a1‖2 − (r̂TOA

1 )2
)

...
1
2

(
‖aN‖2 − (r̂TOA

N )2
)


,

with Q = ‖x‖2.
The authors in [18] then considered a noisy environment, and from (5), they obtained a solution

to the localization problem by solving the following LS problem:

θ̂ = arg min
θ

(Gθ− h)T W (Gθ− h) =
(

GTWG
)−1

GTWh, (6)

where W = SJS is the weight matrix, and S = diag

([
(r̂RSS

1 )2−γ

γ , . . . , (r̂RSS
N )2−γ

γ , r̂TOA
1 , . . . , r̂TOA

N

])
,

J = diag
([

σ2
n1

, . . . , σ2
nN

, σ2
m1

, . . . , σ2
mN

])
.

It is worth mentioning that the authors in [18] assume perfect knowledge of the noise powers,
which might not be the case in practice.

3.2. NR Algorithm

In [23], the authors considered the problem of range estimation between two sensors using RSS
and TOA measurements. By exploiting the hybrid measurements, they found the optimal distance
estimation, d̂opt

i , by setting derivative of the ML estimator to zero, i.e., they get d̂opt
i as the non-zero

solution of the following equation:

d̂opt
i = B1i + B2i‖x− ai‖+ B3i‖x− ai‖2 + B4i log ‖x− ai‖, i = 1, . . . , N, (7)

where B1i =
20γ(σmi

10
3 )2

ln 10 (Pi − P0 + bi), B2i = − 20
3 σ2

ni
(di − βi), B3i =

200
9 σ2

ni
, and B4i =

200γ2(σmi
10
3 )2

ln 10 .

However, the problem in (7) does not have a closed-form solution, and the authors in [23] use
the Newton-Raphson mehod instead to get a sub-optimal solution. They first obtain a rough estimate
of the distance using only the TOA measurements, r̂TOA

i . Then, by drawing the tangent line to the
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curve of (7) at the point
(

r̂TOA
i , d̂opt

i |‖x−ai‖=r̂TOA
i

)
one obtains a better estimate as the intersection of

the tangent and the abscissa, i.e.,

d̂NR
i =

B1i + B2i r̂TOA
i + B3i(r̂TOA

i )2 + B4i log r̂TOA
i

B2i + B3i r̂TOA
i + B4i

r̂TOA
i ln 10

. (8)

The estimation can be further improved by repeating this procedure [23].
Note that perfect knowledge of noise powers and NLOS bias realization is assumed known in [23],

which might not be a valid assumption in practice.

3.3. JAH Algorithm

Similarly to [23], the authors in [20] study the problem of range estimation between two sensors.
To derive a sub-optimal estimator, the authors in [20] start by taking the derivative of the ML estimator
and setting it to zero. After manipulating the result, they obtain

log ‖x− ai‖ = −
γ2

a2 ‖x− ai‖2 +
γ2r̂TOA

i
a2 ‖x− ai‖ −

Pi − P0 + bi
a

, i = 1, . . . , N, (9)

where γ =
σni
σmi

and a = 10γ
ln 10 .

The right-hand side of (9) is then relaxed into an affine function. However, since there are
infinite possible choices to do so, the authors in [20] chose n “control points”, δj, j = 1, . . . , n, to get
a general result, and applied an ordinary least squares approach to minimize the parameters of the
affine function.

Finally, by assuming that r̂TOA
i < δ = δ3−δ1δ2

δ2−δ2
1

, where δk =
1
n ∑n

j=1 δk
j , k = 1, 2, 3, they derived the

following estimator:

d̂JAH
i =

1
ϕi

W0

(
ϕieψi

)
, (10)

where ϕi =
γ2

a2 (r̂i + δ), ψi =
γ2

a2

(
a

γ2 (P0 − Pi − bi) + δ̃
)

, with δ̃ = δ2 − δ1δ and W0(•) denoting the
principal branch of the Lambert W-function.

It is worth mentioning that in [20], uniformly spaced points were chosen within a predefined
interval. In addition, the authors in [20] generalized their estimator for the case where the condition
r̂TOA

i < δ = δ3−δ1δ2
δ2−δ2

1
is not met. Furthermore, the authors in [20] assume perfect knowledge of noise

powers is available and that all links are LOS, which might not be the case in practice.
Even though NR and JAH algorithms were originally designed for estimating the range between

two sensors, their generalization to the localization problem is straightforward after one has the
range estimates. According to [24], by using the estimates d̂NR

i and d̂JAH
i obtained from [23] and [20]

respectively, one can obtain a target location estimate by solving the following problem:

minimize
x

N

∑
i=1

ωi

(
‖x− ai‖2 − d̂NR/JAH

i

)2
, (11)

where ωi = 1− d̂NR/JAH
i

∑N
i=1 d̂NR/JAH

i
.

The problem in (11) can be rewritten in a vector form as

minimize
θ=[xT ,‖x‖2]

{
‖Ω

(
Hθ− g

)
‖2 : θT Dθ+ 2 f Tθ

}
, (12)
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where Ω = diag(ω), with ω =
√

ωi, and

H =


−2aT

i , 1
...

−2aT
N , 1

 , g =


(

d̂NR/JAH
1

)2
− ‖a1‖2

...(
d̂NR/JAH

N

)2
− ‖aN‖2

 , D =

[
Ip 0p×1

01×p 0

]
, f =

[
0p×1

−1/2

]
.

Observe that both the objective function and the constraint in (12) are quadratic. This type of
problem is known as GTRS [24], and its exact solution is given by

θ̂(λ) =
(

HTΩTΩH + λD
)−1 (

HTΩTΩg − λ f
)

,

where λ is a unique solution to $(λ) = 0, for λ ∈ I, with $(λ) = θ̂(λ)T Dθ̂(λ) + 2 f T θ̂(λ) and

the interval I =

(
− 1

λ1(D,HTΩT ΩH)
, ∞
)

, where λ1 is the maximum eigenvalue of a matrix. It is

known that $(λ) is strictly decreasing over I [24]; thus, the optimal λ can be readily obtained by
a bisection procedure.

3.4. SR-WLS Algorithm

The authors in [21] tried to mitigate the influence of the NLOS bias in the mean sense,
by approximating the N NLOS biases by a single (mean) one, which transforms the originally
under-determined problem into a determined one (for 2N ≥ p + 2). By using this approximation,
from (1a) and (1b) one gets

Pi = P0 − b− 10γ log10
‖x− ai‖

d0
+ ni, (13a)

di = ‖x− ai‖+ β + mi, (13b)

where b and β represent the mean NLOS bias for RSS and TOA measurements, respectively, also called
the balancing parameters. Obviously, the price one pays for such an approximation is only partial
mitigation of the NLOS bias. However, on the other hand, it allows to keep the balancing parameters
as optimization variables to be estimated together with the target location, which leaves somewhat
control over the problem at hand (e.g., in the two extreme cases: all LOS/NLOS links).

In [21], the authors then rearrange (13a) and apply the first order Taylor series approximation to
it. This is followed by squaring the derived equation, together with squaring (13b) and some simple
algebraic manipulations to, by introducing weights, finally derive the following WLS problem:

minimize
x,b,β

N

∑
i=1

wRi

(
ξ2

i ‖x− ai‖2 − ρ2

2ξi‖x− ai‖

)2

+
N

∑
i=1

wTi

(
‖x− ai‖2 − d̈2

i
2‖x− ai‖

)2

, (14)

where ρ = d010
P0−b
10γ , ξi = 10

Pi
10γ , wRi = 1 − d̂i/ ∑N

i=1 d̂i and wTi = 1 − d̈i/ ∑N
i=1 d̈i, where

d̂i = d010
P0−Pi−b

10γ represents the ML estimate of the distance from (1a) and d̈i = di − β, so that more
relevance is given to nearby links.

However, since the problem in (14) is non-convex, instead of tackling (14) directly, the authors
in [21] substituted it by

minimize
x,b,β

N

∑
i=1

wRi

(
ξ2

i ‖x− ai‖2 − ρ2

2ξi d̂i

)2

+
N

∑
i=1

wTi

(
‖x− ai‖2 − d̈2

i

2d̈i

)2

. (15)
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Observe that if b and β were known, (15) could be solved exactly by a bisection procedure.
This motivated the authors in [21] to apply an alternating procedure [6] to estimate x, and b and β.
The final framework of the problem written as a generalized trust region sub-problem is given below.

minimize
θ=[xT ,‖x‖2]T

{
‖W

(
Aθ− q

)
‖2 : θT Dθ+ 2FTθ = 0

}
, (16)

where W = diag([w̃T
1 , w̃T

2 ]), w̃1 = [w̃1i]
T , w̃1i =

√
wRi

2ξi d̆i
, w̃2 = [w̃2i]

T , w̃2i =
√

wTi
2d̃i

,

A=



...
...

2ξ2
i aT

i −ξ2
i

...
...

2aT
i −1

...
...


, q=



...
ξ2

i ‖ai‖2 − ρ̂2

...
‖ai‖2 − d̃2

i
...


,

After solving the problem in (16) for a fixed b and β and obtaining an estimate of the target’s
location, x̂, the authors in [21] updated their estimates as follows.

b̂ =
∑N

i=1

(
P0 − Pi − 10γ log10

‖x̂−ai‖
d0

)
N

,

β̂ =
∑N

i=1
(
di − ‖x̂− ai‖

)
N

.

The alternating procedure is given in a flow chart, presented in Figure 1. For more details,
the reader is referred to [21]. As it can be seen from Figure 1, SR-WLS is composed of two main phases:
solving the localization problem and updating the NLOS bias estimates. In the first iteration, all links
are treated as LOS, i.e., b̂ = β̂ = 0 is set. With the use of these estimates, the localization problem is
solved to acquire an estimation of the target location. Then, by exploiting this estimate, an update of
the NLOS bias estimates is performed, and the localization problem is solved again by employing the
updated estimates. This alternating procedure is executed Tmax times [21].

Input: Pi, di, for i = 1, ..., N, Tmax

Initialize: b̂← 0
β̂← 0
t← 1

Solve: SR-WLS

t < Tmax?

Stop

t← t + 1

Update: b̂ and β̂

no

yes

Figure 1. Flow chart diagram of the SR-WLS algorithm in [21].
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3.5. R-GTRS Algorithm

Unlike [21], where the authors first treated all links as LOS to later apply an alternating
optimization approach and improve the location estimate and the mean NLOS bias estimate in
an iterative fashion, the authors in [14] took a different (single-step) approach. By treating all links as
NLOS and NLOS biases as nuisance parameters whose upper bound on the magnitude is assumed
(imperfectly) known, they mitigated their negative influence by resorting to a robust, worst-case
scenario, approach.

First, bmax
2 was added to both sides of (1a) and βmax/2 was subtracted from both sides of (1b).

P̃i = P0 − b̃i − 10γ log10
‖x− ai‖

d0
+ ni, (17a)

d̃i = ‖x− ai‖+ β̃i + mi, (17b)

with P̃i = Pi + bmax/2, b̃i = bi − bmax/2, d̃i = di −
βmax

2 and β̃i = βi −
βmax

2 .
After doing some simple manipulations with (17a), the first order Taylor series approximation for

small noise was applied to this equation. The so derived equation was then squared, together with (17b).
After disregarding the second-order noise terms and applying a WLS criterion, the following min-max
problem was obtained:

minimize
x

maximize
ρi

N

∑
i=1

(
ν2

i ‖x− ai‖2 − ρ2
i

2νi‖x− ai‖

)2

, (18a)

minimize
x

maximize
β̃i

N

∑
i=1

(
(d̃i − β̃i)

2 − ‖x− ai‖2

2‖x− ai‖

)2

, (18b)

which can be written as

minimize
x

maximize
ρi

N

∑
i=1

f 2(ρi), where f (ρi) =

∣∣∣ν2
i ‖x− ai‖2 − ρ2

i

∣∣∣
2νi‖x− ai‖

, (19a)

minimize
x

maximize
β̃i

N

∑
i=1

f 2(β̃i), where f (β̃i) =

∣∣∣(d̃i − β̃i)
2 − ‖x− ai‖2

∣∣∣
2‖x− ai‖

. (19b)

By noticing that ∣∣∣b̃i

∣∣∣ = ∣∣∣∣bi −
bmax

2

∣∣∣∣ ≤ bmax

2
,
∣∣∣β̃i

∣∣∣ = ∣∣∣∣βi −
βmax

2

∣∣∣∣ ≤ βmax

2
, (20)

and that

maximize
ρi

N

∑
i=1

f 2(ρi) =
N

∑
i=1

[
maximize

ρi
f (ρi)

]2
, (21a)

maximize
β̃i

N

∑
i=1

f 2(β̃i) =
N

∑
i=1

[
maximize

β̃i

f (β̃i)

]2

, (21b)
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the authors in [14] first solve the maximization problems under certain conditions, where they got two
possible solutions. By applying these two solutions, and joining the RSS and TOA branches together
into a single estimator, the following robust estimation problem was derived:

minimize
x

N

∑
i=1

(
ν2

i ‖x− ai‖2 − µ

2νi‖x− ai‖

)2

+
N

∑
i=1

(
ν2

i ‖x− ai‖2 − η

2νi‖x− ai‖

)2

+
N

∑
i=1

(
d2

i − ‖x− ai‖2

2‖x− ai‖

)2

+
N

∑
i=1

 (d̃i −
βmax

2 )2 − ‖x− ai‖2

2‖x− ai‖

2

.

(22)

Since both RSS and TOA short-distance links are trusted more than the remote ones, due
to their multiplicative and additive factors [1], the authors in [14] enhanced the localization
accuracy, by introducing weights in (22), defined as w = [ŵi, w̃i]

T , where ŵi = 1 − d̂i/ ∑N
i=1 d̂i,

w̃i = 1− d̃i/ ∑N
i=1 d̃i, with d̂i = d010

P0−Pi−bmax/2
10γ being a mean ML estimate of the distance from (1a).

In addition, because (22) is highly non-convex, it was not tackled directly, but it was rather
substituted by

minimize
x

N

∑
i=1

ŵi

(
ν2

i ‖x− ai‖2 − µ

2νi d̂i

)2

+
N

∑
i=1

ŵi

(
ν2

i ‖x− ai‖2 − η

2νi d̂i

)2

+
N

∑
i=1

w̃i

(
d2

i − ‖x− ai‖2

2d̃i

)2

+
N

∑
i=1

w̃i

 (d̃i −
βmax

2 )2 − ‖x− ai‖2

2d̃i

2

.

(23)

Then, by expanding the squared norm terms in the numerators of (23), the proposed joint hybrid
localization algorithm can be written as

minimize
θ=[xT ,‖x‖2]T

{
‖W̃

(
Ãθ− q̃

)
‖2 : θT Dθ+ 2 f Tθ = 0

}
, (24)

W̃ = diag([wT
1 , wT

2 ]), w1 = [w1i, w1i]
T , w1i =

√
ŵi

2νi d̂i
and w2 = [w2i, w2i]

T , w2i =
√

w̃i
2d̃i

for i = 1, ..., N,

Ã =



...
...

−2ν2
i aT

i ν2
i

...
...

−2ν2
i aT

i ν2
i

...
...

2aT
i −1

...
...

2aT
i −1

...
...



, q̃ =



...
µ− ν2

i ‖ai‖2

...
η − ν2

i ‖ai‖2

...
‖ai‖2 − d2

i
...

‖ai‖2 − (d̃i −
βmax

2 )2

...



.

3.6. A Heuristic Approach for the Best Measurement Selection

The authors in [20] introduced a term critical distance, which is the distance between two sensors
around which the performance of estimators based on hybrid RSS-TOA measurements should
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outperform both estimators based on RSS-only and TOA-only measurements. According to [20],
the formula for calculating the critical distance is given as

D =
σmi√

e
σ2

ni
a − 1

. (25)

However, the formula in (25) does not depend on the size of the area where the sensors are
deployed, and it assumes perfect knowledge of the noise powers. The latter assumption might not
stand in practice; thus, a different approach is considered here.

From (1a) and (1b) respectively, the distance that best estimates ‖x− ai‖ in the mean ML sense is

d̂RSS
i = 10

P0−Pi−bmax/2
10γ , (26a)

d̂TOA
i = di − βmax/2. (26b)

By taking advantage of the estimates in (26a) and (26b), we can calculate the normalized relative
difference between them as

ε =

∣∣∣d̂RSS
i − d̂TOA

i

∣∣∣
max{d̂RSS

i , d̂TOA
i }

. (27)

As it is well known, RSS measurements are most valuable for short inter-sensor distances, while
TOA ones bring advantage for long inter-sensor distances [1]. In order to exploit this fact, we make
use of (27) to derive one of the following three choices:

• ε < εmin: use TOA-only measurements;
• εmax ≤ ε ≤ εmax: use hybrid RSS-TOA measurements;
• ε > εmax: use RSS-only measurements.

The values chosen for εmin and εmax in the above approach are entirely based on heuristics,
but they make sense in what we consider to be a short and a long inter-sensor distance (as it will be
seen in Section 5). Furthermore, our approach does not depend on the knowledge about the noise
powers and it implicitly incorporates the size of the area, i.e., the length of links.

4. Complexity Analysis

Given K as the maximum number of steps in the bisection procedure, Table 1 summarizes the
computational complexities of the considered algorithms in this work. It can be seen from Table 1
that all estimators have linear computational complexity in N. Nevertheless, it is worth mentioning
that JAH requires computing the principal branch of the Lambert W-function [20] and that SR-WLS is
executed iteratively [21]; hence the execution time of these estimators is somewhat higher than the
remaining ones.

Table 1. Summary of the Considered Algorithms.

Algorithm Complexity

HWLS in [18] O (N)

NR in [23] O (KN)

JAH in [20] O (KN)

SR-WLS in [21] Tmax ×O (KN)

R-GTRS in [22] O (KN)
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5. Simulation Results

In this section, a set of simulation results are presented with the objective to analyze the
performance of the considered algorithms and compare them with the performance of their
counterparts that make use of RSS-only and TOA-only observations. Note that HWLS in [18],
NR in [23] and JAH [20] were all implemented here with perfect knowledge of noise powers and perfect
knowledge of bi and βi, which does not hold in practice. Hence, the results presented herein can be
seen as lower bounds for these estimators, rather than their true achievable performance. All presented
results were acquired by using MATLAB. Two main scenarios are considered: (1) random deployment
of all sensors inside a quadratic region of length B in each Monte Carlo, Mc, run, and (2) fixed
placement of anchors according to Table 2 and random deployment of the target within a quadratic
region of length Bt. The second scenario is adopted here with the purpose of guaranteeing a steady
distance between the target and anchors. Note that the first N anchors were always employed for this
scenario, in concordance with Table 2. RSS and TOA measurements were generated according to (1a)
and (1b). Unless stated otherwise, fixed simulation parameters are summarized in Table 3. For the ease
of expression, σi (dB, m) and biasi (dB, m) are used to denote the noise powers and the NLOS biases of
both the RSS and TOA measurements, respectively. Moreover, the NLOS biases were drawn randomly
from an exponential distribution whose rate parameter is drawn from a uniform distribution on the
interval [0, biasmax] (dB, m), i.e., biasi ∼ Exp(U [0, biasmax]), i = 1, ..., N, in each Mc run. The main

performance metric is the root mean squared error (RMSE), RMSE =
√

∑Mc
i=1

‖xi−x̂i‖
Mc

, where x̂i denotes
the estimate of the true target location, xi, in the i-th Mc run.

Table 2. Fixed anchors locations (m) in the second considered scenario.

i 1 2 3 4 5 6 7 8 9 10

ai

[
0
0

] [
B
0

] [
B
B

] [
0
B

] [
B/2

0

] [
B

B/2

] [
B/2

B

] [
0

B/2

]

ai

[
0
0

] [
B
0

] [
B
B

] [
0
B

] [
B/3

0

] [
B

B/2

] [
B/2

B

] [
0

B/2

] [
2B/3

0

]

ai

[
0
0

] [
B
0

] [
B
B

] [
0
B

] [
B/3

0

] [
B

B/3

] [
B/2

B

] [
0

B/2

] [
2B/3

0

] [
B

2B/3

]

Table 3. Summary of the Fixed Simulation Parameters.

Label Description Value

P0 Reference power 20 (dBm)

γ Path loss exponent 3

d0 Reference distance 1 (m)

biasmax Magnitude of NLOS bias B/5 (dB, m)

σi Noise power 3 (dB, m)

Bt Area border for targets in the second scenario 15 m

|Ln| Number of NLOS links N

Tmax Max number of iteration for SR-WLS 2

εmin Lower limit for ε 0.25

εmax Upper limit for ε 0.75

Mc Number of Monte Carlo runs 50,000
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Figure 2 illustrates the RMSE (m) versus N performance of R-GTRS estimator in [22] for different
B in the two considered scenarios. The figure shows that the counterpart of the estimator employing
RSS-only measurements is the best option for low B in general. However, when B is increased this
counterpart worsens significantly, as expected, and the hybrid version of the estimator becomes the best
option. Actually, one can see that measurement integration is the best choice when N is low for all B.
This is not surprising, since it benefits from the double information gathered by each anchor, whereas
the traditional counterparts do not have that luxury, and have a limited amount of information. When B
is set to its highest considered value, it was expected that the TOA-only counterpart outperforms the
other options; however, this is not quite the case, especially in the first considered scenario. This can
be explained to some extent by the fact that, in the first scenario, random deployment of all sensors is
considered and there were no guaranties that the actual inter-sensor distance was large. Nevertheless,
this can not be said in the second scenario, where the hybrid estimator and its TOA-only counterpart
exhibit practically the same performance.
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(a)B = 15 m, random deployment
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(c)B = 25 m, random deployment
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(f)B = 50 m, fixed deployment

Figure 2. Root mean squared error (RMSE) versus N comparison for R-GTRS.

Figure 3 illustrates the RMSE (m) versus N performance of SR-WLS estimator in [21] for different
B in the two considered scenarios. Principally, very similar conclusions to those of Figure 2 can be
made from Figure 3: the best option for low B is the RSS-only counterpart in general, whereas the
hybrid estimator dominates over the remaining ones as B is increased. Once again, the TOA-only
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counterpart practically matches the performance of the hybrid estimator in the second scenario for the
highest considered value of B.
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Figure 3. RMSE versus N comparison for SR-WLS.

Figure 4 illustrates the RMSE (m) versus N performance of HWLS estimator in [18] for different
B in the two considered scenarios. For the first scenario, the figure corroborates earlier conclusions,
but leaves the RSS-only counterpart as the worst option in the second scenario for all considered B.
This result was not anticipated, and no explanation for this behavior is provided here.

Figure 5 illustrates the RMSE (m) versus N performance of NR and JAH estimators in [20,23]
respectively, for different B in the two considered scenarios. Note that the two estimators utilize
both RSS and TOA measurements to obtain the range between the target and anchors, and that their
decomposition into RSS-only and TOA-only counterparts is not straightforward. Therefore, only the
hybrid version of the algorithms is considered here. Figure 5 exhibits that JAH is favorable in scenarios
with low B, whereas NR is a better option than JAH when B is increased.
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Figure 4. RMSE versus N comparison for HWLS.

Moreover, Figure 6 illustrates the RMSE (m) versus N comparison of SR-WLS estimator in [21]
in the first considered scenario when NLOS biases are randomly chosen from a uniform distribution.
It also illustrates a comparison of cumulative distribution function (CDF) versus localization error (LE),
defined as ‖x̂i − xi‖ (m) in the same scenario. The figure presents the results of the estimator when it
uses the proposed heuristic approach, denoted as “Selection”, as well as the results of the estimator
utilizing double RSS-only and double TOA-only measurements. Although the comparison in terms of
quantity of the acquired information is fair, it is important to note that, in order to acquire the double
measurements, SR-WLSRSS and SR-WLSTOA require two signal transmissions. This might affect the
sensors’ battery lives in the long term, as well as the utilization efficiency of the radio spectrum
(doubling the measurement time and increasing the risk of message collisions). On the other hand,
the hybrid algorithms require a single transmission to acquire two measurements (RSS and TOA),
at a cost of a somewhat increased complexity of the sensors in terms of hardware. Nevertheless, recent
advances in micro electro-mechanical systems allow practically all modern devices to measure these
two quantities [1,10].
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Figure 5. RMSE versus N comparison for NR and JAH.

From Figure 6 one can see that our procedure for choosing the best alternative for each link works
well, since such estimator matches or even betters the performance of the previously best option in all
considered scenarios. This estimator consistently shows the best performance, while a tendency of
the estimators using RSS-only and TOA-only observations to worsen and improve as B increases is
noticed, respectively. Please note that in this work, NLOS environments were considered, whereas the
authors in [20] considered that all links were LOS. Although our general findings are in line with the
ones presented there, the difference in the considered scenarios might explain why they do not have
a perfect alignment in the case where B is large.

In order to check the robustness of the proposed heuristic approach to different values of εmin

and εmax, the RMSE versus N for the heuristic approach applied to SR-WLS algorithm in the first
considered scenario for different set of values of these parameters is presented in Figure 7. Note that
all three sets of values chosen as the limits for ε are reasonable in the sense that they capture what
is considered to be short/long inter-sensor distance. It can be seen from Figure 7 that there is only
marginal difference in the performance for different settings of the parameters of interest, indicating
that the proposed heuristic approach is robust to them.
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Figure 6. Simulation results for SR-WLS, when biasmax = 6 (dB, m), biasi ∼ U [0, biasmax] (dB, m).
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Figure 7. RMSE versus N comparison for SR-WLS for different limits for ε in the first
considered scenario.

In practice, it is likely to have a mixture of LOS/NLOS links; hence, it is of interest to study
the performance of an algorithm against different values of |Ln|. To do so, the RMSE versus |Ln|
performance comparison of the proposed heuristic approach applied to SR-WLS in the first considered
scenario when N = 10 is presented in Figure 8. Moreover, to account for realistic measurement model
mismatch and the robustness of the proposed heuristic approach to imperfect knowledge of the PLE,
in Figure 8 the PLE is chosen randomly for each link, i.e., it is chosen from a uniform distribution
from the interval [2.7, 3.3], γi ∼ U [2.7, 3.3]. Figure 8 shows that the proposed heuristic approach is
robust to the number of LOS/NLOS links in general. However, in the case where B = 50 m, one can
notice a clear tendency of its performance to degrade as the number of NLOS links is increased.
This result is interesting and not foreseen. Although there is no evidence, it is most likely caused by the
poor quality of long inter-sensor RSS measurements, which in NLOS environments suffer additional
deterioration. Nevertheless, the result shows that the proposed heuristic approach is not perfect and
has its vulnerabilities; hence, further improvements are welcomed in order to reach a more robust
solution to the problem.
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Figure 8. RMSE versus |Ln| comparison in the first considered scenario, when N = 10, γi ∼ U [2.7, 3.3],
σi = 6 (dB, m), and biasmax = 6 (dB, m).

6. Conclusions and Future Work

In this work, the problem of target localization in adverse NLOS environments using integrated
RSS and TOA measurements was addressed. It was shown that the considered estimators do not profit
from the hybrid measurements by default, and that there is a gray area that needs to be taken into
consideration, which depends on inter-sensor distances. Moreover, a simple heuristic approach was
presented in order to choose the best measurement for each link, which is then used for performing
the localization. It was shown that such an estimator can match or even better the performance of the
estimator using one fixed measurement option. Furthermore, the simulation results indicated that the
employed TOA model suffers slightly at relatively short inter-sensor distances, but the employed RSS
model cannot seem to handle long ones. This does not come as a surprise, but it is a confirmation that
the employed RSS model is over-simplistic for long ranges. Finally, note that all estimators considered
here are linear ones. Perhaps employing different tools (e.g., convex optimization techniques or
multidimensional scaling) which might require higher computational complexity, but could combat
better with the negative NLOS bias effect, and thus result in higher localization accuracy might also be
worthy of exploring.

Although our general findings are somewhat similar with the ones presented in [20] for the case of
LOS links, it becomes obvious that more work is required when the considered environment contains
NLOS links. The negative influence of NLOS biases additionally complicate the problem at hand,
since they can have a huge impact when estimating the distance of a link. Moreover, even though our
procedure implicitly incorporates inter-sensor distance and does not depend on the knowledge of the
noise powers (unlike the existing theoretical formula for calculating the critical distance) there are still
many open questions to be considered in order to optimize the mechanism for opting between the
available measurements and possibly integrating them in a different (better) fashion. These are all open
questions that deserve more attention and are left for future work. Likewise, simultaneous localization
of multiple targets able to cooperate with each other is of interest for future work. Finally, employing
Bayesian theory and filters for real-time tracking of a moving target might be an interesting direction
for further research.
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