Software Impacts 13 (2022) 100363

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

SOFTWARE

IMPACTS

Original software publication

Unity Snappable Meshes

Nuno Fachada ®", Rafael C. e Silva", Diogo de Andrade ?, Nélio Cédices ©

2 COPELABS, Lusdfona University, Lisboa, Portugal
b ECATI, Luséfona University, Lisboa, Portugal
¢ INESC-ID, Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Procedural content generation (PCG)
Computer games

Layout

Designer-centric methods

3D maps

Unity game engine research questions.

The Snappable Meshes algorithm procedurally generates 3D maps for computer games by iteratively selecting
and linking pre-built map pieces via designer-specified connectors. In this paper we present an implementation
of this algorithm in the Unity game engine, describing its architecture and discussing core implementational
solutions. A number of examples illustrate the potential of the algorithm and the capabilities of the software.
We assess the application’s impact on past and ongoing research, and how it can be improved to support future

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0.0
https://github.com/Softwarelmpacts/SIMPAC-2022-123

Apache License 2.0

Git

C#

Unity (cross-platform game engine) >2020.3 LTS
https://github.com/VideojogosLusofona/snappable-meshes-pcg/wiki/User-guide
nuno.fachada@ulusofona.pt

1. Introduction

This paper describes a Unity game engine [1] implementation of
the Snappable Meshes technique for procedurally generating 3D maps
for computer games [2,3]. The technique generates maps by iteratively
selecting and connecting pre-modeled building blocks on designer-
specified positions, while offering a number of parameters which allow
users to manipulate the look and feel of the generated outputs. The
concrete method for selecting the next building block is also given
as a parameter for the generation algorithm, further promoting de-
signer control over the created maps. The Snappable Meshes tech-
nique is able to produce sizeable maps in milliseconds, while avoiding
size and layout constraints [3]. The Unity implementation presented
here follows these conceptual guidelines, but also addresses a number

* Corresponding author.

of strictly implementational issues, such as geometry overlap detec-
tion, map validation through path finding, and reproducible large-scale
experimentation.

This paper extends Refs. [2,3] by offering a detailed description
of the software that supports them, and is organized as follows. Sec-
tion 2 describes the Unity implementation of the Snappable Meshes
technique, highlighting the software’s architecture and how several
implementational issues were solved. To better contextualize the reader
on the type of outputs generated with the technique, a number of
illustrative examples are presented in Section 3. The impact of this
Unity implementation is discussed in Section 4, while its limitations
and possible improvements are addressed in Section 5.

E-mail addresses: nuno.fachada@ulusofona.pt (N. Fachada), castroesilva.rafael@gmail.com (R.C. e Silva), diogo.andrade@ulusofona.pt (D. de Andrade),

nelio.codices@tecnico.ulisboa.pt (N. Cédices).

https://doi.org/10.1016/j.simpa.2022.100363
Received 29 June 2022; Accepted 8 July 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.simpa.2022.100363
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100363&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-123
https://github.com/VideojogosLusofona/snappable-meshes-pcg/wiki/User-guide
mailto:nuno.fachada@ulusofona.pt
mailto:nuno.fachada@ulusofona.pt
mailto:castroesilva.rafael@gmail.com
mailto:diogo.andrade@ulusofona.pt
mailto:nelio.codices@tecnico.ulisboa.pt
https://doi.org/10.1016/j.simpa.2022.100363
http://creativecommons.org/licenses/by/4.0/

N. Fachada, R.C. e Silva, D. de Andrade et al.
2. Description

This section is organized into three distinct subsections. We start
by summarizing the designer’s workflow in Section 2.1. The software’s
architecture is presented in Section 2.2. Finally, a discussion of how
several interesting implementational issues were solved takes place in
Section 2.3.

2.1. Designer workflow

The Unity implementation of the Snappable Meshes technique ma-
kes use of Unity’s editor tools to handle the input of the human
designer, allowing designers and researchers to test the method. The
implementation includes two preconfigured scenes (discussed in Sec-
tion 3), allowing interested users to start experimenting immediately.
The map generation workflow is divided into three steps:

1. Configuration of the generation process, during which the de-
signer imports the building blocks to be used for map creation
and specifies the algorithm’s parameters. These building blocks,
or map pieces, are in essence parameters of the generation
algorithm.

2. Map generation and validation assessment, during which the
created map and respective path finding validation results are
presented.

3. Demo of an NPC traversing the map, which starts automati-
cally when entering Unity’s play mode, offering the designer a
first-person perception of the generated map, as exemplified in
Figs. 2(b), 2(d), 2(f), and 2(h).

This workflow can be repeated until the designer is satisfied with
the results.

2.2. Software architecture

Fig. 1 presents a simplified UML class diagram of the software’s ar-
chitecture, highlighting its main components. Here, MonoBehaviour
and ScriptableObject are Unity-provided classes, essential for
developing projects in this game engine, and which can be manipulated
from Unity’s editor. The former, MonoBehaviour, is the base class
from which every game object'-attachable script derives. The latter,
ScriptableObject, allows derived classes to serve as templates for
persistent data-oriented game assets. These assets can also be handled
from the editor—as well as from scripts—although they cannot be
directly attached to game objects.

The GenerationManager class is at the core of the implemen-
tation. It holds the generation parameters and performs the map gen-
eration itself, implementing the Snappable Meshes algorithm. As can
be observed in Fig. 1, the GenerationManager holds the collection
of MapPiece—building blocks—to be used for map generation. An
instance of this class is exposed to the user via Unity’s editor, allowing
them to choose and configure the algorithm’s parameters, its build-
ing blocks, and the desired block selection method (these are further
discussed in Section 2.3.3, namely the classes to the right and below
GenerationManager in Fig. 1).

As shown in Fig. 1, each MapPiece can have zero or more con-
nectors, although building blocks without connectors will not be very
useful, as they cannot be snapped together with existing map pieces. In
turn, a Connector instance can reference another connector during
map generation. If so, it is linked with that other connector. Otherwise,
it is free and may become linked before the map generation process
terminates.

! Game objects, implemented in Unity’s GameObject class, are enti-
ties that exist in Unity Scenes. They implement the Component design
pattern [4], and among different types of component, they can contain
MonoBehaviour-derived scripts.

Software Impacts 13 (2022) 100363

The NavBuilder and NavScanner classes, bound to map nav-
igation and validation, are analyzed in Section 2.3.4. Finally, the
Experimenter class and IExperiment interface are related with
reproducible experiments, and are further discussed in Section 2.3.5.

2.3. Implementation details

In this section we describe a number of implementation details
which might be relevant for researchers or developers to better un-
derstand the code, either for improving/building on it, or with the
purpose of reimplementing the Snappable Meshes technique in another
framework.

2.3.1. Importing building blocks as prefabs

When the designer creates a map piece, it is necessary to specify its
mesh, individual connectors (and their connection characteristics), and
one or more colliders? if piece overlap—discussed next—is undesirable.
Human-designed pieces are added to the generation pipeline as prefabs,
Unity’s implementation of the Prototype design pattern [4]. Therefore,
the blocks with which the algorithm is parameterized are prototypes,
while the pieces actually placed on the map are copies of the original
blocks.

2.3.2. Avoiding geometry overlap

A crucial aspect of the Snappable Meshes technique is the capability
of creating maps without overlapping building blocks. To guarantee
this, when a map piece is selected for placement on the map, an op-
tional verification—specified during the algorithm’s parameterization—
certifies that it does not intersect existing blocks for each of its possible
connections [3].

Overlap verification requires that the building blocks contain one or
more box colliders, i.e., rectangular cuboid-shaped bounding volumes
approximately mirroring the block’s shape. This allows Unity to quickly
detect if the current block intersects with existing map pieces in a
relatively precise way. Box colliders are used in this implementation
since general convex mesh colliders in Unity are limited to 255 triangles
and may display inaccurate behavior.

2.3.3. Block selection methods

The Strategy design pattern [4] was used to decouple the block
selection methods from the main Snappable Meshes algorithm. Conse-
quently, each selection method is implemented in its own class derived
from the AbstractSM class, as shown in Fig. 1. Existing selection
methods are enumerated through C#’s reflection system by searching
for corresponding configuration classes, which extend AbstractSM-
Config. An instance of the latter is then used by the Generation-
Manager to configure and instantiate the concrete selection method
derived from AbstractSM. These relations are highlighted in Fig. 1.

The Unity implementation of Snappable Meshes is bundled with
four block selection methods—Arena, Corridor, Branch, and Star—
discussed in detail in Refs. [2,3]. The GenerationManager instance
shown to the user through Unity’s editor allows choosing the desired
selection method via a dropdown list. In practice, the user chooses a
concrete instance of AbstractSMConfig, the parameters of which
are then exposed to allow them to configure the picked selection
method.

Following this approach, the implementation of new selection meth-
ods becomes very simple, requiring only two new classes: one for the
selection method itself, and another for configuring it.

2 A collider is Unity’s terminology for a bounding volume.



N. Fachada, R.C. e Silva, D. de Andrade et al.

MonoBehaviour

Software Impacts 13 (2022) 100363

ScriptableObject

‘ NavBuilder }(«Use»-- NavScanner }<ause»--‘| Experimenter ‘ —{

1
«interface»
IExperiment

Concrete
experiments

‘ ArenaSM ‘ ‘ CorridorSM ‘ ‘ BranchSM ‘ ‘ StarSM ‘

Usen-=-omomoenoe 1User----- >
VAl ‘
Connector H MapPiece MG i ‘ Absz‘r:w?:fgl\aﬂcg)nﬂg
A
i ArenaSMConfig CorridorSMConfig BranchSMConfig StarSMConfig
«se»

«abstract»

AbstractSM

Fig. 1. Streamlined UML class diagram of the Snappable Meshes Unity implementation. Shaded blocks represent Unity classes.

2.3.4. Map navigation, validation and demo

Map validation occurs automatically after the generation process,
and is carried out with Unity’s built-in navmesh system. A navmesh—
short for navigation mesh—is a mesh of convex polygons that define
navigable areas on a map. These polygons can be considered nodes
in a graph, with adjacent polygons forming valid paths, or in graph
terminology, a link between nodes. Thus, a path finding algorithm such
as A* can be used to determine if a path exists between any two nodes.

Unity’s navmesh system allows the runtime creation of navmeshes
on an existing map, and is used in this implementation for this purpose.
After a navmesh is deployed for a generated map, a prespecified
number of random navigation points is placed in the navmesh. Unity’s
path finding system is then used to determine if valid paths exist
between each pair of navigation points. Several navigation metrics can
be computed with this information, as discussed in Ref. [3]. The first-
person demo mode uses valid paths between these navigation points to
move the camera-carrying agent around the map.

Several classes are involved in this process, two of which,
NavBuilder and NavScanner, are shown in Fig. 1. The former
addresses the runtime creation of the navmesh over the generated map,
while the latter is responsible for deploying the navigation points and
calculating the different navigation metrics. NavScanner is exposed
to the user via Unity’s editor, allowing them to define the number of
navigation points to deploy, the random number generation strategy
(important for reproducible experimentation, discussed next), as well
as a number of visual debugging options.

2.3.5. Reproducible experimentation

The Snappable Meshes implementation in Unity allows the user to
configure and run reproducible experiments, essential in both academic
and industry contexts. From a research point of view, reproducible
experimentation allows the validation of the technique itself. In indus-
try contexts, specific parameter sets can be assessed as adequate (or
not) for deploying the map generator in production settings. The Ex—
perimenter class, shown in Fig. 1, is responsible for this process. It
references an object implementing the IExperiment interface which
exposes a list of parameter sets—either by containing or generating
them—guiding the experiments to be performed.

The Experimenter class is exposed to the user via Unity’s editor,
allowing them to select the experiment to be performed. The parameter
sets in the selected experiment are automatically associated with the
parameters from the Snappable Meshes algorithm through reflection.
After the experiment is executed, raw generation and validation times
are saved to a CSV file, which can then be imported and analyzed using
standard statistical or data science techniques, e.g. [5].

3. Ilustrative examples

The Snappable Meshes implementation in Unity is bundled with
two preconfigured scenes, Benchmark and Artistic, each with markedly
dissimilar building blocks. Besides allowing interested users to get
started quickly, these scenes exemplify some of the output diversity
possible with the Snappable Meshes technique.

Fig. 2 displays four examples, one per row, where each column
displays a different perspective: a general overview of the map is shown
on the left, while a first-person perspective of the same map is presented
on the right. The first two rows, Figs. 2(a)-2(b) and 2(c)-2(d), show two
maps generated with the Benchmark scene. This scene contains “lego”-
like pieces with contrasting colors, and is appropriate for designers
to understand how the algorithm iteratively builds the maps. It is so
named since it was used for benchmarking the technique with respect
to generation and validation times, as well as overall navigability [3].

The two bottom rows, Figs. 2(e)-2(f) and 2(g)-2(h), present maps
created with the Artistic scene. The map pieces included with this scene
are considerably different from those in the Benchmark scene, yielding
cleaner maps with seamless connection interfaces, closer to what one
would find in a game development context.

Each of the example maps in Fig. 2 was created with a different
implementation-independent block selection method, namely branch
2(a)-2(b), star 2(c)-2(d), arena 2(e)-2(f), and corridor 2(g)-2(h). For
more information regarding these selection methods, please refer to
Refs. [2,3].

4. Impact

The Snappable Meshes algorithm was originally developed for a
multiplayer shooter game in the context of a semester project at Lus6-
fona University’s Bachelor in Videogames—an industry-focused, inter-
disciplinary game development degree [6], in which 3D rendering
is an important component of the overall teaching strategy [7]. The
algorithm favored the game’s replayability, demanding that players
adapt to a brand new map on every match. Since the algorithm was
shown to generate diverse map types (i.e., not specific to the game
in question), a preliminary version was first presented in a confer-
ence [2]. The technique was later formalized, thoroughly evaluated,
and contextualized within the academic and industrial state of the art in
procedural level generation [3]. The standalone Unity implementation
was first presented in this second publication, since it supported the
exhaustive benchmarking and evaluation of the Snappable Meshes



N. Fachada, R.C. e Silva, D. de Andrade et al.

()

Software Impacts 13 (2022) 100363

Fig. 2. Four illustrative maps generated with the Snappable Meshes algorithm. Each row contains two perspectives of an example map; more specifically, figures on the left column
display an overview of the respective map, while figures on the right show a frame from the first-person demo running on that same map. Parameterization overview: (a)-(b) map
generated in the Benchmark scene with the branch selection method; (c)-(d) map created in the Benchmark scene with the star selection method; (e)—(f) map generated under the
Artistic scene with the arena selection method; (g)—(h) map generated in the Artistic scene using the corridor selection method.

technique [3]. Finally, the application’s architecture and several im-
plementational aspects—especially in the context of its architectural
design—are described in the current paper.

The Unity implementation of the Snappable Meshes algorithm is
currently aiding the pursuit of additional research questions. In par-
ticular, we are studying connector auto-generation given an arbitrary

block/map piece, and improving collision detection by using a hierar-
chical bounding box tree, which is also automatically generated from
the geometry. Although the algorithm allows generating maps in a
fraction of the time of a fully human-based approach, it still demands
considerable manual work by the designer, and our current research
would allow for faster iteration times with individual block design.



N. Fachada, R.C. e Silva, D. de Andrade et al.

There is also preliminary work on adding support for map loops, and
extending the algorithm to dynamically change the geometry to close
unused connectors, instead of just having a drop out of the current play
area as in the current implementation.

5. Limitations and possible improvements

In addition to the limitations discussed in the previous section,
namely the requirement for non-trivial human labor and lack of support
for map loops—which are currently being addressed—we believe there
are two other issues with the implementation that could be targeted for
improvement.

The first issue concerns the way navigability validation is per-
formed, i.e., by deploying a predefined amount of navigation points
and then verifying their connectivity. In the current version, these
points are randomly placed in the runtime-generated navmesh. Some of
these points may be placed on rooftops or other areas not intended for
navigation. Consequently, if this approach is followed as-is for indoor
maps with hollow building blocks, invalid paths outside the intended
play area may be generated. Therefore, individual building blocks may
require additional metadata specifying valid movement zones. An inter-
esting improvement to the application would be the automatic genera-
tion of this metadata, although this is not currently being researched.

The second issue is merely implementation-dependent, and is also
related with navigation. More specifically, the current version does not
support jumps, requiring map pieces to be linked to accept a direct
path between them. While this has not limited our research with the
Snappable Meshes technique thus far, it can hinder experimentation
by interested readers, and is therefore an implementational aspect that
could be improved.

Software Impacts 13 (2022) 100363
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by the Fundacdo para a Ciéncia e a
Tecnologia under Grant UIDB/04111,/2020 (COPELABS).

References

[1] Unity Technologies, Unity®, 2022, https://unity.com/.

[2] R.C. e Silva, N. Fachada, N. Cédices, D. de Andrade, Procedural game level
generation by joining geometry with hand-placed connectors, in: Proceedings
of Videojogos 2020-12th International Videogame Sciences and Arts Conference,
SPCV, 2020, pp. 80-93.

[3] R.C. Silva, N. Fachada, D. De Andrade, N. Cédices, Procedural generation of
3D maps with snappable meshes, IEEE Access 10 (2022) 43093-43111, http:
//dx.doi.org/10.1109/ACCESS.2022.3168832.

[4] R. Nystrom, Game programming patterns, Genever Benning, 2014, https://
gameprogrammingpatterns.com/.

[5] N. Fachada, Snappable meshes performance dataset, 2022, Jan., http://dx.doi.org/
10.5281/zenodo.5851209.

[6] N. Fachada, N. Cédices, Top-down design of a CS curriculum for a computer games
BA, in: Proceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE 20, ACM, New York, NY, USA, 2020, pp.
300-306, http://dx.doi.org/10.1145/3341525.3387378.

[7]1 D. de Andrade, N. Fachada, PyXYZ: an educational 3D wireframe engine in
Python, in: Proceedings of the 26th ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 21, ACM, New York, NY, USA,
2021, pp. 519-525, http://dx.doi.org/10.1145/3430665.3456345.


https://unity.com/
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://refhub.elsevier.com/S2665-9638(22)00074-4/sb2
http://dx.doi.org/10.1109/ACCESS.2022.3168832
http://dx.doi.org/10.1109/ACCESS.2022.3168832
http://dx.doi.org/10.1109/ACCESS.2022.3168832
https://gameprogrammingpatterns.com/
https://gameprogrammingpatterns.com/
https://gameprogrammingpatterns.com/
http://dx.doi.org/10.5281/zenodo.5851209
http://dx.doi.org/10.5281/zenodo.5851209
http://dx.doi.org/10.5281/zenodo.5851209
http://dx.doi.org/10.1145/3341525.3387378
http://dx.doi.org/10.1145/3430665.3456345

	Unity Snappable Meshes
	Introduction
	Description
	Designer workflow
	Software architecture
	Implementation details
	Importing building blocks as prefabs 
	Avoiding geometry overlap
	Block selection methods
	Map navigation, validation and demo
	Reproducible experimentation


	Illustrative examples
	Impact
	Limitations and possible improvements
	Declaration of competing interest
	Acknowledgment
	References


