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ABSTRACT The present work proposes a new approach to address the energy based acoustic localization
problem. The proposed approach represents an enhanced version of evolutionary optimization based on
Elephant Herding Optimization (EHO), where two major contributions are introduced. Firstly, instead of
random initialization of elephant population, we exploit particularities of the problem at hand to develop
an intelligent initialization scheme. More precisely, distance estimates obtained at each reference point
are used to determine the regions in which a source is most likely to be located at. Secondly, rather than
letting elephants to simply wander around in their search for an update in the source location, we base
their motion on a local search scheme which is found on a discrete gradient method. Such a methodology
significantly accelerates the convergence of the proposed algorithm, and comes at a very low computational
cost, since discretization allows us to avoid the actual gradient computations. Our simulation results show
that the enhanced algorithm significantly outperforms the standard EHO method for low noise and matches
its performance for high noise, in terms of localization accuracy. Moreover, they show that the proposed
enhanced version requires significantly less number of iterations to converge.

INDEX TERMS Acoustic Localization, Elephant Herding Optimization, Gradient Descent, Population
Initialization, Swarm Intelligence.

I. INTRODUCTION

ACOUSTIC event detection, classification and localiza-
tion has gained much attention in the signal processing

community in recent years. Since the introduction of the
acoustic decay model [1], [2] many studies have been pro-
posed in several fields of applications, namely wildlife en-
vironments [3], assisted living [4], gunshot characterization
[5], underwater sensors networks [6], smart cities [7], and
localization [8], just to name a few examples.

The present work focuses on localization of an acoustic
source, and more particularly, on the energy-based acoustic
localization problem. This problem has been addressed by
several authors, mostly using deterministic approaches. Ho
and Sun [9] proposed an algebraic closed-form solution
which offers a good performance for low noise power, but
their solution presented considerable degradation for higher
levels of noise. Two different weighted least squares methods

were proposed in [10], [11] with low computational burden
for energy-based localization. Even though these methods
have low computational burden, both methods ignore second-
order noise terms (although [11] adds a correction tech-
nique leading to further performance gains); hence, their
performance is highly degraded when noise power becomes
large. Wang [12] and Beko [13] proposed two semi-definite
relaxation methodologies, both with good performance even
in noisy environments, but their major drawback is their high
computational complexity, which increases significantly with
the size of the network. Beko showed in [14] that this issue
can be alleviated to some extent by applying Second-Order
Cone Programming (SOCP) relaxations instead. Nonethe-
less, although the SOCP offers relatively good accuracy even
in noisy environments, its computational complexity is still
not satisfactory for real-time applications.

Moreover, all above mentioned algorithms bypass the orig-
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inal localization problem by applying a set of approxima-
tions/relaxations to the problem in order to transform it into
a form suitable for solving by the applied tools. Although
the solutions obtained in this manner are reasonable in gen-
eral, they are sub-optimal and their quality depends on the
tightness of the applied relaxations. In huge contrast to the
deterministic algorithms, here we take a different approach
which tackles the original problem directly, without applying
any approximations/relaxations.

Evolutionary optimization falls within the set of meta-
heuristics algorithms for global optimization inspired by
biological evolution. In general, it works as follows. An
initial group of candidate solutions is generated and itera-
tively updated based on a predetermined behaviour. Each
new generation is produced by removing less desired solu-
tions, and introducing small random changes based on the
behavior of interest (biological, swarm, or physical) [15].
Due to the simplicity of the computational models adopted,
this kind of algorithms have low computational complexity
and consequently, low processing time. To overcome the
limitations of deterministic methods, a swarm intelligence
algorithm based on Elephant Herding Optimization (EHO)
proposed by Wang [16], was applied to the acoustic energy-
based problem [17], [18]. It showed promising results, in both
simulation environment and field experiments. The method
was also applied to other engineering problems, namely
for proportional integral derivative control [19], networks
quality of service [20] and drone placement control [21].
Other swarm algorithms are also worth mentioning, namely,
Monarch Butterfly optimization algorithm [22], Grey Wolf
Optimization [23], Chicken Swarm Optimization Algorithm
[24], among several others that are used in a variety of
fields nowadays. It is worth mentioning that none of the
above methods take into account information coming from
the observations (i.e., the model itself) for initialization (it
is considered random in general), which represents a serious
overlook. Intuitively, it is clear that additional information
about the problem at hand could offer us an upper hand. Still,
to the best of our knowledge, there is no existing metaheuris-
tic method which accounts for this additional information;
thus, the present work is the first one to show one way of how
measurements acquired within a network could be exploited
to better the performance of a metaheuristic algorithm. All of
the mentioned algorithms, based on particle swarms, namely
EHO, are proposed as generic methods, usually tested on
generic fitness functions, with the purpose of being applied
afterwards in all kind of scientific areas where the main goal
is achieving global optima. Hence, although the authors in
[17] study the same problem as the current work, the pro-
posed EHO presents some shortcomings that can be avoided.
It disregards any specification or internal information about
the model that serves as a base to derive a cost function. The
same issue is applied concerning population initialization,
where randomization is most frequently employed. Never-
theless, the proposal of new initialization methods and their
improvement have been the subject of several studies over

the years [25]. Randomization, being the most widely used
method, aims to generate evenly distributed populations [26].
Population initialization is crucial since poor initial guesses
might prevent an algorithm to find optimal solutions. Besides
generic methods like pseudo-random number generator [27]
or chaotic number generator [28], application specific initial-
ization methods have also been considered for a particular
set of problems, namely for antenna design [29] or image
segmentation [30].

Firstly, a new strategy based on theoretical foundations
through distance estimation is proposed for the initialization
of population. The second major contribution concerns the
acceleration of the method’s convergence by integrating dis-
crete gradient search methodologies in the EHO algorithm
[31]. With this procedure, it will be shown that the modified
algorithm obtains up to 1 m of reduction in the localization
error for lower values of noise, requiring considerably less
iterations. For higher values of the noise, it replicates the
performance of the original EHO. The increase in compu-
tational effort is compensated by the reduction of the number
of iterations, due to substantial increase of the convergence
rate.

The paper is organized as follows. Section II formulates
the mathematical approach in terms of the acoustic model
and the optimization algorithm. Section III present the novel
methodology for the population initialization. Section IV
defines the new methodology for accelerating EHO conver-
gence rate. Section V presents and discusses simulations
results of the proposed enhanced algorithm and Section VI
concludes the paper and presents future lines of research.

II. PROBLEM FORMULATION
Consider a 2-dimensional sensor network, composed of N
sensors and one acoustic source node. The sensors are uni-
formly distributed on a circle, centered at the middle point
of the search space, deployed over a 100m × 100m square
region. The unknown location of the source is denoted by
x and the known location of the ith sensor by si, where
i = 1, . . . , N . The goal of this work is to determine the
unknown location of the source by exploiting acoustic energy
measurements acquired by sensors. The relation between the
acoustic signal and other model parameters is correlated with
the decay model of an acoustic signal [1], [2].

To obtain the energy observations at the ith sensor, we
average the readings over M signals obtaining the following
decay model equation:

yi =
giP

||x− si||β
+ νi, for i = 1, . . . , N, (1)

where P is the transmitted power, νi represents the measure-
ment noise, assumed as a Gaussian distribution with zero
mean, νi ∼ N (0, σ2

νi), and β is the path loss exponent.
The value of β typically falls within the interval [2, 4] (2 in
free space and 4 in adverse indoor environments) [1], [2].
In this work we consider β = 2, since we consider signal
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propagation in free space, without reflections or reverbera-
tions. By employing the noisy observations defined in (1), the
maximum likelihood (ML) estimator of x can be formulated
as [1], [2]:

x̂ = argmin
x

N∑
i=1

(
yi −

giP

||x− si||2

)2

(2)

The problem in (2) is non-convex and has singularities, thus,
it is well suited for application of a metaheuristic optimiza-
tion method. EHO algorithm [16], which models herding
behavior of elephants in nature, can be summarized as fol-
lows: the population of elephants contains a number of clans,
which comprise a number of elephants. Each clan moves
under the leadership of a matriarch, while a number of male
elephants that reached adulthood leave the clan they belong
to and live alone in nature. EHO models these behaviors with
two operators: clan update (which updates the elephants and
matriarch current positions in each clan) and a separation
operator (which enhances the population diversity at the later
search phase) [16]. In terms of population initialization, each
clan and its respective elephants, are randomly distributed in
the search space. For those not familiar with the biological
terminology used here, what the presented methodology rep-
resents is essentially an intelligent Monte Carlo search, in
which a set of points (called elephants) is evaluated through
a cost function (the objective function in (2)) in search for
the best one. Mathematically, the algorithm can be resumed
by eq. (3) to (6). Eq. (3) is the clan updating operator, that
controls the movement of the clan according to the elephant
matriarch ci

xnew,ci,j = xci,j + α(xbest,ci − xci,j)r (3)

where xnew,ci,j and xci,j are the updated and previous posi-
tions of the jth elephant in the ith clan respectively, α ∈ [0, 1]
is a tuning parameter and r ∼ U [0, 1] is a randomly
generated number, with a uniform distribution and xbest,ci
represents the fittest elephant individual in clan ci. Eq. (4)
and (5) update the position of the fittest elephant in the clan
where ξ ∼ U [0, 1]

xnew,ci = ξ xcenter,ci (4)

xcenter,ci,d =
1

nci

nci∑
j=1

xci,j,d (5)

while α determines the influence of the ith matriarch on
xnew,ci,j , ξ determines the influence of xcenter,ci on xnew,ci ,
where xcenter,ci is the centre of clan ci. Index d is a reference
to the dth dimension, where 1 ≤ d ≤ D and D being the
dimension of the considered problem, nci is the number of
elephants in the ith clan. Eq. (6)

xworst,ci = xmin + (xmax − xmin + 1)ψ, (6)

corresponds to the separating operator that moves the ele-
phants with the worst fitness to their new position, where

xmax and xmin are respectively the upper and lower bound
of the position of elephant individual, and ψ ∼ U [0, 1]. More
details can be found in [16].

III. POPULATION INITIALIZATION METHOD
As seen in Section II, the original EHO algorithm initial-
izes elephants in clans, the matriarchs and male elephants
randomly, without considering any prior knowledge of the
problem itself. When applying the algorithm to a specific
problem, we can take the advantage of knowing the obser-
vation model employed. If we consider the acoustic decay
model presented in eq. (1), we can obtain an estimate of the
distance between sensor si and the source, from the noisy
observations yi as

d̂i =

√
giP

yi
, i = 1, . . . , N (7)

Eq. (7) provides an ML estimate of the distance from each
sensor to the source, meaning that the source is within a
circle centered at each one of the sensors with a known radius
equal to d̂i. If the measurements were noise-free, the true
source coordinates would be at the intersection point of all
radii. Nevertheless, in practice, there will not exist a single
intersection point of the circles, due to noise. In order to study
the most likely region of intersections, we consider groups of
3 sensors. The extrapolation to different number of sensor is
straightforward.

To demonstrate two extreme configurations, we considered
a setup of N = 9 sensors with simulated observation
readings between s1, s4, s7 and one source (blue square).
Fig. 1a corresponds to a consistent case, where all circum-
ferences intersect, forming a convex hull. On the opposite, in
Fig. 1b, we obtained three external circumferences without
intersections. In the following two subsections, both cases
will be treated separately in terms of concerning the proposed
strategy for initialization of the clans.

A. SECANT CIRCUMFERENCES
In this case, we are interested in calculating the center of
the convex hull formed by the intersection of the three
circumferences that will be the center of the clan.

Consider 3 circumferences with center at coordinates si ∈
R2 and radius Ri ∈ R, i = 1, ..., N , where the circumfer-
ences intersect themselves at at least two points, which means
that the expression (8) is logically true (Fig. 1a).

(d14 < R1+R4)∧(d17 < R1+R7)∧(d47 < R4+R7) (8)

In eq. (8), dij refers to the true Euclidean distance between
sensors si and sj .

Considering Fig. 2, the points delimiting the convex hull
common to the intersection of the three circumferences,
PC1, PC2 and PC3, will be defined by the following
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(a) (b)

FIGURE 1: Distances Configurations. (a) Consistent Case (Secant circumferences) (b) Non-Consistent Case (External
Circumferences)

generalized expressions:

Pck =

{
xck = P ′(x)− h sj(y)−si(y)||si−sj||

yck = P ′(y) + h
sj(x)−si(x)
||si−sj||

, ||Pk −Pck|| < Rk

Pck =

{
xck = P ′(x) + h

sj(y)−si(y)
||Si−Sj||

yck = P ′(y)− h sj(x)−si(x)||si−sj||
, ||Pk −Pck|| > Rk

where P′ is the intersection point between PaPc1 and s1s4,
xck and yck are the coordinates of the point Pck, and
P′ = si + a

sj−si
||si−sj||

a = R2
i −R2

j + ||si − sj||2
h2 = R2

i − a2.
The calculated clan center will correspond to the center of
mass of PC1, PC2 and PC3, thus

Px =
PC1 +PC2 +PC3

3
(9)

B. EXTERNAL CIRCUMFERENCES
Consider 3 circumferences with center in coordinates si ∈
R2 and radius Ri ∈ R, i = 1, ..., N , where the circumfer-
ences do not intersect themselves (Fig. 1b), meaning that eq.
(10) is logically false:

(d14 < R1 +R4) ∨ (d17 < R1 +R7) ∨ (d47 < R4 +R7)
(10)

In the case of external circumferences not having any point
of intersection, we consider the straight-line segment be-
tween s7 and s1, s7s1, that will intersect the circumferences
radii in two points, PA and PB (Fig. 3). Our point of interest
will be the middle point P17, obtained with the following
expressions:

P17 =
PA +PB

2
(11)

PA(x, y) =

{
PA(x) = s7(x) + cos(α)R7

PA(y) = s7(y) + sin(α)R7

(12)

PB(x, y) =

{
PB(x) = S1(x)− cos(α)R1

PB(y) = S1(y)− sin(α)R1

(13)

where:

α = arccos

(
|s1(x)− s7(x)|
||s7 − s1||

)
The center of the clan will correspond to the center of the

triangle formed by4P17P47P14, thus

Px =
P17 +P47 +P14

3
(14)

The application to other set of points is straightforward.
The next sets to consider would be (s2s5s8) and (s3s6s9).
In our study, we did some approximations for calculating the
center of mass considering straight-line segments. A more
precise approach would be to consider the semicircles that
delimit the space, but the computational effort would not
justify their use, since they might bring only a marginal gain.

C. POPULATION INITIALIZATION ALGORITHM
Notice that, in real life applications, Fig. 1a would corre-
spond to additive noise in all sensors, while Fig. 1b would
reflect subtractive noise in all sensors readings. Nevertheless,
in practice it is likely that a combination of the two extreme
cases occurs. In such a case, one should consider the expres-
sions of Subsections (III-A) and (III-B) separately, for each
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pair of sensors combination. The purpose of determining the
center points of the convex hull limited by the intersections,
or the middle points when facing external circumferences,
lays in the fact that the solution of the ML problem that will
be applied to EHO algorithm is likely to be located in the
regions of intersection. One of the goals of our enhanced
methodology is to initialize EHO clans at the center of the
intersection points presented in Subsections III-A and III-B.
With that purpose, the matriarch will be initialized at the
center and elephants belonging to the same clan, will be ini-
tialized in a circumference with the biggest radius that covers
all intersection points. Notice that, since we are dealing with
three sensors for each intersection set, the total number of
sensors must be a multiple of three, and the number of clans
(NClans) that will be generated is directly related with the
number of sensors

NClans = N/3 (15)

where N is the total number of sensors. Male elephants will
be generated outside the clan radius, but sufficiently close to
it, catching possible local minima that could fall outside the
radius.

As we shall see, this simple procedure enables a substantial
improvement of the original EHO algorithm in terms of
convergence. This can be explained to some extent by the fact
that the population is initialized near the optimal solution. It
should be noticed that the number of function evaluations is
directly proportional to the number of new clans generations
(eq. 16); thus, with a lower number of generations it is
expected to obtain similar results

NFEval = NClans ∗NCi ∗NGen (16)

whereNFEval is the number of function evaluations,NClans
is the number of generated clans, NCi

is the number of
elephants in each clan and NGen the number of generations.

FIGURE 2: Secant Circumferences Center Calculation

FIGURE 3: External Circumferences Center Calculation

A pseudo code of the proposed procedure to generate the
initial population is summarized in Algorithm 1.

Algorithm 1 Clan Initialization Procedure

1: function CLANINIT(S, d̂)
2: n = 1
3: L = length(s) . Number of Sensors
4: q = 0 : L/3 : L− L/3 . Select most distant sensors

for each group
5: for k = 1 : L/3 do . Groups of 3 Sensors to create

the clans
6: p = ||skq1 − skq2 ||
7: if Dk < Dkq2 then . Check point positions
8: Rm = Dkq1 ; RM = Dkq2

9: else
10: Rm = Dkq2 ; RM = Dkq1

11: end if
12: if (Dk + Dk + q2 > p)&&(p + Rm > RM)

then
13: Px = ... . Apply Eq. 9
14: else
15: Px = ... . Apply Eq. 14
16: end if
17: P(k) = Px

18: ... Repeat the procedure for remaining groups (q)
19: end for
20: end function

IV. LOCAL SEARCH METHODOLOGY
Our proposed approach for local search is based on applying
the Steepest Descent Gradient (SDG) method for each ma-
triarch elephant [32], in each iteration, before applying the
clan update operator. The simplest method, although not the
most efficient one for determining the direction of search,
the direction opposite to the function gradient. Therefore,
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a course in the set direction will imply the direction of
maximum decay [33]. Thus, mathematically it corresponds to
αk∇f(xk). The determination of αk, that corresponds to the
search step, will be considered as an uni-dimensional search
problem such as:

αk = argmin
α>0

f(xk − αk∇f(xk)) (17)

A line search method as considered in (17), for choosing
an appropriate step length, αk, is considered. The solution
presented in our present work, is the Backtracking Line
Search (BLS). The BLS is a scheme based on the Armijo-
–Goldstein condition [34], where the method evolves from
starting with a large estimate of the step size (αk), and
iteratively backtracks the step size until a decrease of the
objective function is observed. The proposed local search
procedure is summarized in Algorithm 2.

Algorithm 2 Local Search Procedure

1: function LOCALSEARCH
2: k=0
3: while Stopping Criterion is not reached do
4: gk = gradient(Model,xk) . Finite Difference

Approximation
5: dk = −gk

6: αk = min(xk + αk.dk) . A. G. condition
7: xk+1 = xk + αk.dk

8: k = k + 1
9: end while

10: end function

Notice that in the present work, a linear approximation of
∇f at the point x0 is obtained as a tangent line to the graph
of f at x0. This is accomplished by using the forward finite
difference method, where the truncation error is ignored [35].
In this way, we avoided tedious and burdensome gradient
calculations, that would increase processing time, and take
advantage of the fast convergence of the SDG for local
search. The local search is performed at every generation,
starting from the current best solution provided by the each
clan matriarch, thus avoiding a high number of executions
of Algorithm 2. The flow chart of Fig. 4 represents the
integration of the presented features into the standard EHO
algorithm, called here Enhanced EHO (EEHO), where new
modifications are marked in red.

As it can be seen from Fig. 4, the present work proposes a
new enhanced algorithm, based on the original EHO, with
two major improvements represented. Firstly, expressions
derived from Section III are used to initialize the clans
instead of considering a random generation. Secondly, a local
discrete gradient based method is used to improve conver-
gence, before the original clan update operator is applied.
However, in order to avoid a drastic increase of the number
of function evaluations, the method is applied only to the
matriarch elephant of each clan. Since the procedure is done
before the updating operator, the eventual benefit obtained

FIGURE 4: Enhanced Elephant Herding Algorithm

will propagate to all other elephants through eq. (3). Based on
the presented improvements, it is expected to obtain a faster
convergence. This hypothesis will be tested in the following
section by changing the stopping criteria to a condition
monitoring the evolution of the algorithm, expressed as

(nEval < MaxEval)∧ (| fCost(xk−1)− fCost(xk) |> 4f)
(18)

where the first inequality in (18) is monitoring the number
of function evaluations (nEval), until a maximum number
is reached (MaxEval). The second inequality monitors the
evolution of the cost function (fCost), and the method is
stopped when it presents a decrease lower than 4f , an
arbitrary small constant.

V. SIMULATIONS AND RESULTS
To validate the claims in the presented work, simulations
were performed, comparing: (1) original EHO method tuned
with parameters obtained from [18] (i.e.: P = 500, gi = 1
for i = 1, ..., N , β = 2, ξ = 0.7, α = 0.1, population
size of 100 elephant divided in 5 clans, and the maximum
number of function evaluations of 3000), (2) the initialization
of the clans population methodology presented in Section III,
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and the new EEHO (3) with and (4) without considering the
stopping criteria from eq. (18), where 4f = 10−5. In all
simulations performed, MC = 10.000 Monte Carlo runs
are considered, with added noise from σ2 = −30 dB to
σ2 = −5 dB with increments of 5 dB of variance. The SOCP
algorithm [14] was simulated applying the same layout and
model conditions (5), considered here as the state of the art
of non-metaheuristic methods. The root mean square error
(RMSE) in (19) is used as the performance metric, in order
to dissipate any effect of the source distribution in the search
space, namely, sources located outside the sensors convex
hull.

RMSE =

√√√√Mc∑
i=1

||xi − x̂i||2
Mc

, (19)

In eq. (19), x̂i denotes the estimate of the true source location,
xi, in the ith Monte Carlo run. Fig. 5 and 6 show simulation
results considering N = 9 and N = 12 sensors, respectively.

FIGURE 5: Simulation Results with N = 9 sensors

As it can be seen from the results of Figs. 5 and 6, the
initialization procedure imply a reduction of the RMSE.
Although the decrease of the error is more evident for low
values of noise, where a reduction of about 1 m is observed,
the proposed EEHO offers improvements for high values
of the noise power as well. It is worth mentioning that
the standard EHO implemented in [18] only outperformed
state of the art methods for high noise values and had some
degradation for lower values of noise, situation that is no
longer present when performing the clan initialization. It can
also be seen that EEHO has only a marginal reduction of
the error, compared with its counterpart using only the clan
initialization, since its major achievement is the enhancement
of the convergence rate as stated previously. Interestingly,
although the performance of EHO is fairly good in noisy
environments, it exhibits limited performance in low-noise
environments [18], where it fails to outperform deterministic

FIGURE 6: Simulation Results with N = 12 sensors

methods, such as the considered SOCP. This result inspired
us to study alternative approaches which would complement
its performance, both in terms of accuracy and convergence
rate, such as the intelligent initialization and local search
schemes proposed here. From Figs. 5 and 6, one can see that
these schemes allowed us a significant error reduction for low
noise power, which is maintained (with somewhat narrowed
margin) throughout the whole considered span of noise pow-
ers. Another important feature to highlight here is the fact
that EEHO performs virtually the same with and without
the implementation of the stopping criteria in eq. (18). This
result indicates that EEHO algorithm converges before the
maximum number of function evaluations is achieved. To get
a better comprehension of this behavior, more simulations
were performed, applying the same stopping criteria to stan-
dard EHO. The results are shown in Fig. 7 to 10 in the form
of histograms, with the number of function evaluations for
different noise variances.

The above histograms show the comparison of the standard
methods with our enhanced one in terms of the number
of function evaluations. As it can be seen by the results,
regardless of the fact that a stopping criteria was added to the
standard EHO algorithm, it required the maximum number
of generations available for most of the times and stopped
only when this limit was achieved, independently of the
stopping criteria. In huge contrast, it can be seen that the
enhanced algorithm requires much lower number of itera-
tions, and the maximum number of evaluations was never
attained. Therefor, the simulations results corroborate the
effectiveness of the two proposed schemes (initialization and
refinement), indicating that the new EEHO algorithm gained
more accuracy and a faster convergence rate compared with
its counterpart, the standard EHO.

VI. CONCLUSION AND FUTURE WORK
In this work two major contributions were presented to
enhance the performance of EHO algorithm applied to the
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FIGURE 7: Simulation Results for Standard EHO, withN =
9 sensors

FIGURE 8: Simulation Results for EEHO, with N = 9
sensors

energy based localization problem. The proposed schemes
take the particularity of the problem at hand and use it in their
advantage, unlike the general EHO. Firstly a method for clan
initialization was introduced on the estimation of the distance
between the acoustic source and the sensors. It was shown
that the proposed methodology implies in better accuracy
for high values of noise, where other methods tend to fail.
Secondly, a discretized version of the SDG method based on
finite differences was incorporated in the clan update opera-
tor, which allowed us to obtain a substantially faster converge
rate. The simulation results validated the productiveness of
the proposed schemes, allowing EEHO to reduce the local-
ization error for roughly 1 m for low noise powers, while
it matched the performance of EHO in noisy environments.
However, the latter result was achieved with significantly
less number of clan generations, which makes EEHO more

FIGURE 9: Simulation Results for Standard EHO, withN =
12 sensors

FIGURE 10: Simulation Results for EEHO, with N = 12
sensors

suitable for real-time applications and networks with limited
energy resources. On the one hand, the superiority of the
proposed algorithm over the deterministic ones is owed to the
fact that we tackle the localization problem directly, rather
than apply approximations/relaxations to it in order to bypass
its non-convexity. On the other hand, its supremacy over the
existing metaheuristic approach is due to the neglection of
the observation information for the initialization stage of the
latter one, which we showed here can be a big overlook, since
it can lead to faster convergence and enhanced localization
accuracy.

Regarding future work, testing other nature-inspired al-
gorithms, will receive our attention. Moreover, integrating
metaheuristic together with deterministic methods to form
hybrid algorithms which can take advantage of the strengths
of the two approaches and minimize their their weaknesses
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might be of interest as well. Finally, testing the algorithm
with measured data from real implementation with broad-
band signal for acoustic event detection and localization will
be of interest.
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