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A Geometric Approach for Distributed Multi-hop
Target Localization in Cooperative Networks

Slavisa Tomic and Marko Beko

Abstract—This work addresses target localization problem in
cooperative distributed sensor networks, in which all sensors
are capable of measuring Received Signal Strength (RSS), but
only some are appropriately equipped to measure Angle Of
Arrival (AOA) of the received signal. A novel approach based
on simple geometry and multi-hopping is proposed, which allows
for natural conversion of the problem into a Generalized Trust
Region Sub-Problem (GTRS). The proposed algorithm comprises
three main steps, each of them with linear computational cost
in the number of neighbors, making it suitable for real-time
applications. Our simulation results validate the performance of
the new algorithm, surpassing some significantly more complex
ones, and almost achieving a lower bound set by an existing
algorithm which uses some (unrealistic) assumptions in its favor.

Index Terms—Distributed localization, Received Signal
Strength (RSS), Angle Of Arrival (AOA), Weighted Central Mass
(WCM), Generalized Trust Region Sub-Problem (GTRS).

I. INTRODUCTION

Fifth-Generation (5G) networks are expected to provide
considerably higher bandwidth and faster data rates. This
will enable connecting huge number of stationary and mobile
devices (such as sensors, agents, users, machines, and vehicles)
supporting Internet-of-Things, creating real-time dynamic net-
works of mobile things [1], [2], [3]. Hence, localization
will gain additional importance, enabling deployment of new
services and contributing to significantly improving the overall
performance of the 5G system [1].

Localization based on range (through Received Signal
Strength (RSS) or time of arrival) and/or bearing (Angle Of
Arrival (AOA)) measurements has received much attention
in the recent society lately [4]-[26]. Nonetheless, most of
these approaches are designed for non-cooperative networks
in which target/target communication is not allowed or require
a central unit which gathers all measurements and performs
all computations. This approach is not very suitable for large-
scale networks due to potential bottlenecks at and near the
central unit, and because its computational complexity depends
highly on the network size. In [20], a cooperative algorithm for
vehicle localization was proposed. It uses intervehicle-distance
measurements taken by a radio-ranging technique, as well
as vehicle kinematics and road maps to estimate the relative
location of vehicles in a cluster. The authors in [21] proposed
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a probabilistic fingerprint approach to determine location of
a mobile target in indoor environments, which significantly
speeds-up computation without employing approximations. A
tracking algorithm with asynchronous updates triggered by
beacon packet receptions, from which AOA estimates are
opportunistically obtained was presented in [22]. The authors
in [22] combined the potential of antenna array processing
with a suitably-designed cooperation strategy and exploited
vehicle-to-vehicle and vehicle-to-infrastructure communica-
tions. In [23], the authors proposed an outdoor place of in-
terest recognition algorithm, aimed at recognizing big outdoor
places only by opportunistically exploiting Wireless Fidelity
(WiFi) access points and mobile devices such as smartphones.
They also introduced the concept of a spot and proposed an
enhanced WiFi fingerprinting algorithm. A hybrid RSS/AOA
localization scheme for distributed networks based on Second-
Order Cone Programming (SOCP) was proposed in [24]. In ad-
dition to sensors’ locations, the authors in [24] considered their
transmit powers as unknowns as well. Although the SOCP al-
gorithm showed good localization accuracy, its computational
complexity is elevated, qualifying it as impractical for real-
time applications. Another recently proposed scheme is the
Distributed Linear Least Squares (DLLS) in [25], where the
authors assumed that all sensors are able to measure both RSS
and AOA quantities of the received signal. First, the authors
in [25] estimate unbiased distances by assuming that the noise
powers are available. Afterwards, they take advantage of the
distance estimates to, jointly with AOA measurements, form
lines in such a manner that, when they are fixed at a known
reference point at one end, the other end indicates an estimate
of the target of interest. Hence, stacking the line equations in
vectors resulted in DLLS. In [26], a Message Passing Hybrid
Localization (MPHL) for cooperative distributed localization
using joint distance and direction measurements was proposed.
The idea was to provide a method for sampling from a generic
distribution. To this end, the authors in [26] employed Markov
chain Monte Carlo sampling and Metropolis-Hastings random
walk, to generate (dependent on a current state) and evaluate
candidate points to compute their beliefs, and choose the best
one. However, the performance of MPHL (both accuracy and
complexity) is directly linked to the number of samples used.

The above RSS/AOA cooperative distributed localization
algorithms are either excessively expensive computation-
wise [24], [26] or require knowledge about noise powers [25]
and its distribution [26]; hence, they might not be conve-
nient for practical use. Unlike these, a novel algorithm is
proposed here based on a simple geometrical approach and
multi-hopping, which has linear computational complexity
and does not require any knowledge about noise powers nor
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its distribution. It can be summarized as follows. First, a
Weighted Central Mass (WCM) approach is used to localize
only sensors with direct links to some known reference points.
Afterwards, the remaining sensors are localized by applying
the law of cosines on (imaginary) triangles between sensors
constructed by resorting to multi-hop approach, which offers
straightforward interpretation of the problem as a Generalized
Trust Region Sub-Problem (GTRS). Owing to some conve-
nient properties, GTRS can be exactly solved by merely a
bisection procedure. Finally, refinement step is performed on
all location estimates by applying WCM and taking advantage
of the current location estimates.

The remainder of this paper is structured as follows. Sec-
tion II introduces the considered measurement models and
formulates the target localization problem. In Section III, a
detailed derivation of the proposed distributed approach is
presented. Sections IV and V validate the performance of
the proposed algorithm in terms of computational complexity
and localization accuracy, respectively. Lastly, Section VI
summarizes the main findings of this work.

II. PROBLEM FORMULATION

Consider a sensor network in a 2-D space comprising a
set of anchors (reference points), |A| = N , (sensors whose
locations are known) and a set of targets, |T | = M (sensors
whose locations we desire to determine), where |• | represents
the cardinality of a set. The true locations of sensors are de-
noted as aj ∈ R2,∀j ∈ A and xi ∈ R2,∀i ∈ T , respectively.
An edge between two sensors exists if and only if they are
within the communication range, R, of each other. Hence, the
sets of all target/anchor and target/target edges are respectively
defined as EA = {(i, j) : ‖xi − aj‖ ≤ R,∀i ∈ T ,∀j ∈ A}
and ET = {(i, j) : ‖xi − xj‖ ≤ R,∀i, j ∈ T , i 6= j}.

Throughout this work, it is assumed that all sensors can
measure RSS quantity of the received signal, and that only
anchors are appropriately equipped to measure AOA. The RSS
sensed by the i-th sensor related to the transmission of the j-th
sensor, is defined as [27, Ch. 3]

Pij = P0−10γ log10
dij
d0

+nij , ∀(i, j) ∈ EA∪ET , i 6= j, (1)

where P0 is the RSS value measured at a short reference
distance d0 (d0 ≤ dij), γ is the path loss exponent, dij is the
distance between sensors i and j, and nij ∼ N (0, σ2

nij ) is the
log-normal shadowing term modeled as zero-mean Gaussian
random variable with variance σ2

nij . It is assumed that RSS
observations between targets are symmetric.

By applying simple geometry, azimuth angle observations
(at anchors) can be modeled respectively as [15]:

ϕij = arctan

(
xi2 − aj2
xi1 − aj1

)
+mij , ∀(i, j) ∈ EA, (2)

where skl denotes the l-th coordinate of k-th sensor, and mij

is the measurement error of the azimuth angle, modeled as a
zero-mean von Mises random variable with the concentration
parameter κmij ∈ [0,∞), i.e., mij ∼ VM(0, κmij ). This
distribution can be interpreted as a circular equivalent of the
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Fig. 1. Illustration of the proposed procedure for a 2-hop case.

Normal one, with a direct relation between the mean direction
and the concentration parameter of the von Mises distribution
and the mean and variance of the Normal one [28], [29].

For the sake of notation simplicity, define P = [Pij ]
T , ϕ =

[ϕAij ]
T , X = [x1, ...,xM ], (X ∈ R2×M ), and E = EA ∪ ET .

From (1), the conditional Probability Density Function (PDF)
of RSS observations is given by

fP (P |X) =
∏

(i,j)∈E

1√
2πσ2

nij

e
−

(
Pij−P0+10γ log10

dij
d0

)2

2σ2nij . (3)

Similarly, from (2) the conditional PDF of an AOA observa-
tions can be written as

fϕ
(
ϕ|X

)
=

∏
(i,j)∈EA

1

2πI0(κmij )
e
κmiju

T
ij

aj−xi
‖xi−aj‖ , (4)

where Ik(•) is the modified Bessel function of first kind of
order k [28], [29], and uij = [cos

(
ϕij
)
, sin

(
ϕij
)
]T is a unit

vector.
A Maximum Likelihood (ML) estimator of X is obtained

by maximizing (3) and (4). However, the ML problem is highly
non-convex with no closed-form solution; thus, tackling it
directly might not be feasible in practice.

III. THE PROPOSED DISTRIBUTED APPROACH

The distance that best estimates ‖xi−âj‖ in (3), with âj =
aj , if j ∈ A and âj = xj , if j ∈ T , in the ML sense is

d̂ij = d010
P0−Pij

10γ , ∀(i, j) ∈ E . (5)

Hence, it is pretty straightforward to obtain an estimate of xi
if it has an anchor neighbor, i.e.,

x̂i = aj + d̂ijuij , (i, j) ∈ EA. (6)

However, due to the limited communication range of the
sensors, only some targets will be able to directly communicate
with anchors, but certainly not all of them. In such a case,
one has to resort to alternative solutions, such as the proposed
geometrical multi-hop approach, illustrated in Fig. 1.

In Fig. 1, we are interested in determining the location of
xk, which has a single target neighbor, xi, and a 2-hop anchor
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neighbor, aj (there is no edge between xk and aj). Note that
an estimate of xi can be obtained through (6), and that ϕij =
ϕji + π. Furthermore, since anchors exclusively can measure
AOA, ϕik (and consequently θi) is not known. Nevertheless,
by applying the law of cosines to the (imaginary) triangle
formed by the three sensors, one has that

‖xk − aj‖2 ≈ d̂2ij + d̂2ik − 2d̂ij d̂ik cos (θi) . (7)

Since cos (θi) = cos
(
ϕij − ϕik

)
= uTij

xk−xi
‖xi−xk‖ , from (7)

it follows that(
2d̂iju

T
ij−2aTj

)
xk+‖xk‖2+‖aj‖2−d̂2ij−d̂2ik−2d̂ijuTijxi≈0,

(8)
which can be written in vector form as

Ayk − b ≈ 0,

where A =
[
2d̂iju

T
ij − 2aTj , 1

]
, yk =

[
xTk , ‖xk‖2

]T
, and

b =
[
d̂2ij + d̂2ik + 2d̂iju

T
ijxi − ‖aj‖2

]
. By introducing an

auxiliary variable α = ‖x‖2, from (8) one can derive a GTRS
problem, i.e.,

minimize
yk=[xTk , α]

T

{
‖(Ayk − b)‖2 : yTkDyk + 2fTyk = 0

}
,

(9)
with

D =

[
I2 02×1

01×2 0

]
, f =

[
02×1
−1/2

]
.

GTRS is characterized by minimizing a quadratic objective
function over a quadratic constraint, and although non-convex
in general, it is a monotonically decreasing function over
an interval, which can readily be computed [10]. Therefore,
GTRS is very suitable for solving via bisection procedure.

Based on the above procedures, we describe the pro-
posed distributed approach in Algorithm 1, denoted as
“WCM+GTRS”. Basically, the algorithm can be divided into
three phases. In the first phase, only targets with 1-hop anchor
neighbors are localized based on a WCM approach of esti-
mates obtained from (6) (as their weighted sum). Weights are
introduced within the process in order to give more importance
to nearby links. This line of reasoning is valid for both RSS
and AOA measurements, as they are trusted more than the
remote ones [8]. The localized targets then become quasi-
anchors (or helpers [30]) for the following phases. Please note
that for notation simplicity, we abuse strict formal notation at
Lines 5, 14, 20, where we use S(l) to denote the l-th element
of the set S, as if S were a vector. In the second phase,
the remaining targets are localized by using the proposed
multi-hop approach that leads to a GTRS framework. To do
so, targets with most quasi-anchor neighbors are allowed to
localize themselves first. Their direct neighbors play a role of
pivots (xi in Fig. 1) and use their own 1-hop neighbors to
form triangles which will allow derivation of (9) at the later
stage1. Finally, a refinement of the estimates is performed by

1Since 2-D networks are considered here, the total of at least three 1-hop
neighbors of the pivots are required to localize the target of interest. Pseudo-
code for this part was omitted from Algorithm 1 for the sake of simplicity,
but if pivots do not have at least three 1-hop (localized) neighbors in total,
they would resort to their (localized) 2-hop neighbors, and so on.

using WCM for each target without any specified order. Note
that, in this process, all direct neighbors of each target are
used, rather than just anchors.

Algorithm 1 The proposed WCM+GTRS algorithm
Require: aj , ∀j ∈ A, d̂ij , ∀(i, j) ∈ EA ∪ EA, uij , ∀(i, j) ∈ EA
1: Initialize: x̂i ← 0, ∀i ∈ T , L ← {i ∈ T }, Â ← {j ∈ A}

//WCM for targets with 1-hop anchor neighbors
2: for i = 1, ...,M do
3: Ai ←

{
j ∈ A : (i, j) ∈ EA

}
4: for m = 1, ..., |Ai| do
5: j ← Ai(m)

6: x̂i ← x̂i +
1/d̂ij∑

j∈Ai
1/d̂ij

(
aj + d̂ijuij

)
7: Broadcast x̂i to its neighbors
8: L ← L \ {i}
9: Â ← Â ∪ {i}

10: end for
11: end for

//GTRS for non-localized targets
12: repeat
13: Tk ←

{
i ∈ T : (i, k) ∈ ET

}
, ∀k ∈ L

14: k ← max
{
|Tk|

}
15: A← [ ], b← [ ]
16: for h = 1, ..., |Tk| do
17: i← Tk(h)
18: Âi ←

{
j ∈ Â : (i, j) ∈ EA ∪ ET

}
19: for g = 1, ..., |Âi| do
20: j ← Âi(g)

21: A←
[
A;
[
2d̂iju

T
ij − 2aT

j , 1
]]

22: b←
[
b; d̂2ij + d̂2ik + 2d̂iju

T
ijxi − ‖aj‖2

]
23: end for
24: end for
25: ŷk ← (9)
26: x̂k ←

[
ŷk(1), ŷk(1)

]T
27: L ← L \ {k}
28: Â ← Â ∪ {k}
29: until L = {}

//WCM improvement for all targets
30: χ̂i ← 0, ∀i ∈ T
31: for i = 1, ...,M do
32: Ei ←

{
j ∈ A ∪ T (i, j) ∈ EA ∪ ET

}
33: for k = 1, ..., |Ei| do
34: j ← Ei(k)
35: χ̂i ← χ̂i +

1/d̂ij∑
j∈Ei

1/d̂ij

(
âj + d̂ijuij

)
36: x̂i ← χ̂i
37: Broadcast x̂i to its neighbors
38: end for
39: end for

IV. COMPLEXITY ANALYSIS

To analyze the worst-case computational complexity, a fully
connected network (i.e., the total number of edges for each
target is |Ei| = N+(M−1), ∀i ∈ T ) is considered and merely
the dominating terms are considered, expressed as a function
of |Ei|. The results regarding computational complexity of the
considered algorithms are summarized in Table I, where Smax,
Cmax, and Tmax are used to denote the number of step in the
bisection procedure in 1, the number of generated candidates
and the number of iterations in MPHL [26], respectively.

As expected, the Table I shows that SOCP is computation-
ally the most intensive one. Even though MPHL has linear
computational complexity in |Ei|, due to high number of
candidates that it requires in each generation step, its execution
time is much higher than those of DLLS and WCM+GTRS.
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TABLE I
COMPLEXITY ANALYSIS OF THE CONSIDERED ALGORITHMS

Algorithm Complexity

WCM+GTRS O
(
Smax × |Ei|

)
SOCP O

(
|Ei|3.5

)
DLLS O

(
|Ei|
)

MPHL O
(
Cmax × Tmax × |Ei|

)

V. SIMULATION RESULTS

This section presents a set of simulation results with the
purpose of validating the performance of the proposed al-
gorithm. Only connected networks are considered, where all
sensors are deployed randomly inside a square with an edge
length B = 30 m in each Monte Carlo (Mc) run. The
observations were generated through (1) and (2), with the
reference distance set to d0 = 1 m, the reference RSS to
P0 = 20 dBm, and the PLE to γ = 3. The number of steps
in the bisection procedure was set to Smax = 30. Furthermore,
σnij = 10 dB and κij = 16.676, which corresponds to
the Gaussian standard deviation of σmij = 10 deg, since
σ2
mij = 1− I1(κij)/I0(κij) [29]. The employed performance

metric is the Averaged Root Mean Square Error (ARMSE),
ARMSE =

√∑Mc

j=1

∑M
i=1

‖xij−x̂ij‖2
MMc

, where x̂ij is the esti-
mate of the true target location, xij , in the j-th Mc run. The
new method is compared with SOCP [24], DLLS [25] and
MPHL [26] algorithms2. It is worth mentioning that, unlike the
new method and SOCP, DLLS and MPHL assume the AOA
quantity is measured by all sensors, rather than just anchors.

Fig. 2 illustrates one particular output by WCM+GTRS
for the network shown in Fig. 2a. Firstly, all targets with
direct anchor neighbors are localized by WCM, Fig. 2b. The
localized targets are then used as quasi-anchors in order to
localize the remaining targets Fig. 2c. Finally, the refinement
step is performed for all targets, Fig. 2d. It can be seen from
the figure that the overall accuracy is fairly good in general,
and that even the targets with no direct anchor neighbors (e.g.,
the four far-left top ones) can be localized fairly accurately.

Fig. 3 illustrates ARMSE (m) versus N performance com-
parison. Naturally, the figure shows that all algorithms benefit
from adding more reference points into the network. This
behaviour is more evident for the new method and SOCP,
while DLLS gets quickly saturated, and only marginally
improves its performance. Even though DLLS (with perfect
knowledge about noise powers) shows the best performance
for all considered N , when it exploits defective information
(σ̂ij = 15 (dB, deg)) its performance deteriorates drastically.
Nonetheless, even when it uses perfect knowledge about noise
powers (as well as measurements of the AOA quantity at
targets), its performance is practically matched by the new
method for large N .

Fig. 4 illustrates ARMSE (m) versus M performance com-
parison. It is noticeable that, while the performance of other

2DLLS and MPHL assume perfect knowledge of the noise powers, which
might not be feasible in practice. Hence, in Figs. 3, 4 and 5 we also
implemented DLLS with imperfect knowledge about the noise powers, just to
give an intuition to the reader how this imperfection could affect its accuracy.

methods is maintained or exacerbated with the increase of
M , the performance of the proposed one actually betters
when more targets are introduced in the network. This can
be explained to some extent by the fact that as the network
becomes denser, it is more likely to acquire more pivots, which
obviously favors the proposed geometric approach.

Fig. 5 illustrates ARMSE (m) versus R (m) performance
comparison. One can notice a somewhat unexpected behavior
of most of the considered algorithms (actually all with linear
computational complexity), since their performance does not
better as R increases. This result suggests that perhaps po-
tentially increased quantity of information is not benignant by
default, and that there might be some highly corrupted edges in
the network that would be preferable to omit in the localization
process, since they might harm the overall performance. The
only algorithm that seems to be robust to this phenomenon is
SOCP, which might be explained to some extent by the fact
that SOCP has considerably higher computational complexity
than the remaining ones. Nevertheless, the figure indicates that
the proposed method betters from the increased information
until a certain point, after which its performance mildly
deteriorates, but is still very close to that of SOCP and MPHL.

Finally, Fig. 6 illustrates ARMSE (m) versus N perfor-
mance comparison of the proposed algorithm when different
number of hops are used in the refinement step, i.e., up to
2, 3, and 4 hops. The figure shows that by using information
from multi-hop neighbors one can improve significantly the
performance of the proposed algorithm. However, it seems that
WCM+GTRS gets saturated fairly quickly with the additional
information, ans using more than two-hops does not bring any
benefit. In fact, its performance degrades marginally as more
than two-hops are employed. This can be explained to some
extent by the fact that the additional information used from
multi-hop neighbors is estimated, rather than measured as in
the case of direct neighbors; hence, exploiting fairly distant
neighbors actually propagates the estimation error. Neverthe-
less, this deterioration is only marginal in comparison with
using up to two-hop neighbors, and still offers considerable
advantage over the original WCM+GTRS.

VI. CONCLUSIONS

This work presented a novel geometric algorithm for target
localization in distributed networks, in which all sensors are
capable of acquiring RSS measurements, but only anchors are
assumed suitably equipped to measure AOA. The proposed ap-
proach can be explained in three parts. Firstly, only the targets
with direct edges to anchors are localized by using the WCM
approach applied to a set of candidate points, obtained in a
simple geometric manner by exploiting range estimates (from
RSS) and AOA measurements. These targets are then treated
as quasi-anchors. Secondly, the remaining targets are localized
by applying the law of cosines on imaginary triangles formed
by targets’ direct and indirect neighbors, leading to the GTRS.
Finally, refinement of the estimated locations of all targets is
performed by applying WCM. Unlike some existing methods,
the proposed one does not require all sensors to measure AOA
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Fig. 2. Illustration of the estimation process by using the proposed WCM+GTRS algorithm for N = 10, M = 50 and R = 7 m.
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Fig. 3. ARMSE (m) versus N : M = 50, R = 10 m, Mc = 1000.

30 35 40 45 50 55 60
2

3

4

5

6

7

8

9

10

Fig. 4. ARMSE (m) versus M : N = 15, R = 10 m, Mc = 1000.

7 8 9 10 11 12 13
2

3

4

5

6

7

8

9

10

Fig. 5. ARMSE (m) versus R (m): N = 15, M = 50, Mc = 1000.

10 11 12 13 14 15 16 17 18 19 20
2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

Fig. 6. ARMSE (m) versus N : M = 50, R = 10 m, Mc = 1000.



6

quantity (which can significantly reduce the network costs)
nor to have information about the noise powers a priori. Even
so, it showed good performance in all considered scenarios,
where it outperformed some computationally more demanding
approaches (SOCP and MPHL), and was competitive with
DLLS that takes advantage of certain assumptions (which
might not hold in practice) to enhance its performance.
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